光学显微镜市场概况和主要品牌

显微镜是一种用于观察太小而无法用肉眼看到的物体的仪器。显微镜技术是研究使用这种仪器的小物体和结构的科学,用于观察肉眼看不到的非常细小的颗粒(粒径为1μm及以下)。光学显微镜广泛用于查看活的或死的样品。在光学显微镜的工作中,它使用标准光和灵敏的摄像头产生显微照片放大物体的小图像。随着技术的增强,光学显微镜可以在短时间内提供更精确的图像。最初,光学显微镜仅用于单个透镜,而最近光学显微镜使用两个以上的透镜。利用光学透镜扩展激光的显微镜光束是光学显微镜中涉及的创新原理技术。光学显微镜被认为是未来细胞生物学结构研究的重要工具 。光学显微镜是一种使用一个透镜或一系列透镜将可见光放大的小样本图像的设备。透镜放置在样品和观察者的眼睛之间以放大图像,以便可以对其进行更详细的检查。光学显微镜被用于许多研究领域,包括微生物学,微电子学,纳米物理学,生物技术,教育机构的实验室以及药物研究。它们还用于查看生物样本以进行医学诊断。随着创新科学需......阅读全文

用普通共聚焦显微镜实现超分辨率单分子荧光成像

传统的细胞及其内部分子显微观察通常使用荧光染料,然后再用不同分辨率的显微术照亮单个分子和与其互动的其他物质。如下图所示,普通共聚焦显微镜和超分辨率显微镜的精准度差异一目了然。(普通共聚焦显微镜观察图,比例尺10μm。图片来自发表文章DOI: 10.1038/s41467-017-00688-0)(随

扫描电子显微镜成像分辨率

  扫描电镜是高能电子散射固体材料,可获得许多特征信号!  微观成像是扫描电镜基本功能,要求高分辨,so可为其他特征信号分析提供精确导航!  sem一般标配se探测器,用se信号获得高分辨像,且se信号可以充分代表扫描电镜电子光学性能。  why  se  not  other?  比靠斯:在电子束

季铵哌嗪如何实现荧光超分辨率成像?

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

山西大学最新文章;新型超分辨率荧光成像

  来自山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室的研究人员将荧光探针分子ALEXA647标记在仿生水凝胶的聚合物链上, 利用全内反射荧光显微镜进行荧光成像, 并采用超分辨率光学波动成像的方法(SOFI)对仿生水凝胶的荧光成像进行超分辨率成像分析。 通过SOFI成像及反卷积处理获得

超分辨率荧光显微镜技术成功运用于外泌体的成像和追踪

  外泌体是由细胞分泌的小膜泡,富含大量的蛋白质。考虑到外泌体在不同生理活动中的显著作用以及在诊断、药物释放方面潜在的价值,研究人员在外泌体的体外追踪和内含物分析方面做了很大的努力。  目前,各种超分辨率显微镜的出现为外泌体的研究提供了强大的工具。2016 年 9 月,东南大学先进光子学中心主任崔一

超分辨率显微镜成像助力学者探询神经回路

  来自哈佛大学的研究人员报告称,她们采用超高分辨率成像绘制出了神经元突触输入区的图谱。这一重要的研究成果发布在10月8日的《细胞》(Cell)杂志上。 论文的通讯作者是著名的华人女科学家庄小威(Xiaowei Zhuang)。庄小威早年毕业于中国科技大学少年班,34岁时成为了哈佛大学的化学和物理双

植物荧光成像仪——荧光成像简介

  荧光是自然界常见的一种发光现象。荧光是光子与分子的相互作用产生的,这种相互过程可以通过雅布隆斯基(Jablonslc)分子能级图描述:大多数分子在常态下,是处于基态的最低振动能级So,当受到能量(光能、电能、化学能等等)激发后,原子核周围的电子从基态能级So跃迁到能量较高的激发态(第一或第二激发

植物荧光成像仪——荧光成像原理

  荧光是自然界常见的一种发光现象。荧光是光子与分子的相互作用产生的,这种相互过程可以通过雅布隆斯基(Jablonslc)分子能级图描述:大多数分子在常态下,是处于基态的最低振动能级So,当受到能量(光能、电能、化学能等等)激发后,原子核周围的电子从基态能级So跃迁到能量较高的激发态(第一或第二激发

荧光成像分辨率和深度如何改变?这篇文献或能让你惊喜

  近年来兴起的近红外二区(900-1700 nm)荧光成像由于能显著降低生物组织的散射和自发荧光干扰,从而能提高成像分辨率和成像深度而备受关注。然而目前广泛报道的基于供体-受体-供体(D-A-D)以及菁类(D-π-A)的有机小分子染料,由于其较大的共轭结构,导致其疏水性较强,药代动力学差,难以功能

荧光显微镜成像质量的决定因素

荧光光学系统的成像质量主要取决于像的衬度和像的亮度,像的衬度是由样品中激发出的荧光与背景上观察到的光之比决定的。背景光包括透过截止激发光的滤色片的杂散激发光,样品组织成分的自发荧光和光学系统的自发荧光和杂散光,在荧光显微术中尽全力要解决的是既获得最佳的像衬度,同时又维持像有足够亮度,这两者往往是矛盾

布鲁克推出Vutara352超分辨率荧光显微镜

  分析测试百科网讯 2015年12月14日,布鲁克在2015细胞生物学ASCB年会上推出首款用于定量分析的超分辨率荧光显微镜Vutara352。Vutara352不仅在速度、成像深度和分辨率等方面具有优势,还加入了实时定量能力。这款产品拥有许多新功能,包括执行偶关联、协同定位、群集分析、活细胞分析

超分辨率显微镜分析在荧光抗体筛选的应用

1873年,德国医师Ernst Abbe 提出了“衍射极限”的概念。他预测,由于光的基本衍射性质,光学显微镜无法实现200nm以下的分辨率。实际上,当两个相隔很近的物点同时发光时,得到的图像是模糊的,无法分辨。超分辨率显微镜(SRM)的诞生打破了一个世纪多以来一直被认为无法突破的瓶颈。 如今,科

荧光成像系统

对完全校准好的荧光成像系统,当用不同的滤色镜组时,样品上一个点在检测器上精确成像为一个点,也就是像素对像素。然而,不同颜色的通道 merge 时,物镜的色差校正不够、滤镜光路没有完全对准都会使得荧光信号之间的记录有差错。对具有复杂图案的图像或明暗信号相混的图像,这个可能就检测不到。会得出这样的结论:

荧光成像系统

用荧光显微镜进行3D球状体荧光成像时,需要进行仪器设置优化和使用高级功能才能得到更好的成像结果。对球状体进行Z轴层扫时,需要选择合适的物镜并进行合适地聚焦才能拍出更清晰的图片。EVOS细胞成像系统和配套的CellesteTM成像分析软件可以完美地对球状体的大小、结构和蛋白表达水平进行定性和定量分析。

27T水冷磁体扫描隧道显微镜原子分辨率成像

     扫描隧道显微镜(STM)诞生于上世纪80年代,是一种集合了精密机械设计、微弱信号测量、智能数据采集的高精尖机电一体化设备。STM不仅能够提供材料表面原子分辨率形貌,还能够结合扫描隧道谱学(STS)获得材料的能带结构信息,这些可以和量子理论进行精确比对,广泛应用于基础科学研究。在扫描隧道显微

超分辨率显微镜实现自由运动神经环路高分辨成像

  提到在体小动物神经成像,人们自然会联想到钙离子荧光探针局部注射或遗传钙指示剂(如Gcamp家族)结合双/三光子显微镜的经典在体成像组合。  随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium ind

显微镜分辨率

D=0.61λ/N*sin(α/2)D:分辨率λ:光源波长α:物镜镜口角(标本在光轴的一点对物镜镜口的张角)想要提高分辨率,可以通过:1、降低λ,例如使用紫外线作为光源;2、增大N,例如放在香柏油中;3、增大α,即尽可能地使物镜与标本的距离降低折叠

显微成像小课堂丨宽场荧光显微镜

  在活体细胞成像应用中,宽场荧光显微镜有助于观察放置于显微镜载物台上特定的环境室中生长的粘附细胞的动力学特性。在最基本的配置中,配备有EPI荧光照明的标准倒置组织培养显微镜与区域阵列检测器系统(通常是CCD摄像机)、合适的荧光滤色片和光闸系统耦合,以限制细胞过度暴露于有害的激发光。基本荧光显微镜依

新的光学显微镜技术树立活细胞超分辨率成像新标准

  来自美国霍华德休斯医学研究所,Janelia研究园的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞内的动态生物过程。他们的新方法显著的提高了结构光照明显微镜(structured illumination microscopy, SIM)的分辨率,一种最适

平铺光片显微镜如何实现均一高分辨率成像

随着组织透明化技术和光片荧光显微技术的发展,3D荧光成像技术实现了快速获取3D组织信息的能力。光片显微镜由于其独特的3D成像能力以及更快的成像速度逐渐成为生命科学研究中3D荧光成像的强有力工具。光片显微镜的实现方式是将激发光片限制在探测焦平面内,使得激发光对样品的光漂白和光毒性降到最低,具有高的三维

荧光成像与高光成像区别

荧光成像与高光成像区别如下:1、原理:荧光成像是利用荧光标记的分子在激发后发出特定波长的光来成像,而高光成像是基于样本的反射或透射光强度的差异来成像。2、样本处理:荧光成像需要在样本中引入荧光标记物,通常是通过染色或基因工程技术来实现,而高光成像则不需要对样本进行特殊处理,直接观察样本的自然反射或透

3D荧光显微镜可帮助大脑深度成像

    活体小鼠大脑深处血管成像图。  截图来源:Eurekalert网站  科技日报北京5月30日电 (实习记者张佳欣)来自瑞士苏黎世大学和苏黎世理工大学的研究人员开发出一种称为漫反射光学定位成像(DOLI)的新技术,利用它可以高分辨率、无创观察活体小鼠大脑深部的微血管。该技术具有卓越的分辨率,可

倒置荧光显微镜技术参数、构造及成像原理

 倒置荧光显微镜是近代发展起来的新式荧光显微镜,特点是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色

徕卡荧光显微镜明场和暗场的成像方法

徕卡荧光显微镜根据衬度形成的机制,对散射吸收像可以有两种成像方式: (一)明场成像法(BFI),即只让近轴区的透射电子柬通过物镜光阑,形成亮背景上的暗图形像。物镜光阑的孔越小,明场像的衬度越大;(二)暗场成像法(DFI),即只让部分大角度的散射束或晶体的某衍射束通过物镜光阑,而将透射束挡掉。这样形成

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧

戴琼海院士团队成功研制实时超宽场高分辨率成像显微镜

  7月8日,清华大学自动化系戴琼海院士领衔的国家自然基金委重大仪器研制团队在多维多尺度高分辨率计算摄像显微仪器研制和生命科学观测领域取得重要成果,以“视频帧率下厘米尺度微米分辨率的生物动态成像”(Video-rate imaging of biological dynamics at centim

计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

荧光显微镜:内置了照明和滤光片用于成像

荧光显微镜的基础荧光显微镜非常适用于测量和分析各种光波长的吸收和激发。内置荧光显微镜设置利用平板分光器将照明器的光源转折平行光学路径。从机械的角度来说,此设置的复杂程度低于其他数字视频显微镜系统,其设置就如图1所示。与大多数光学系统一样,此系统同样具备了传感器、光学组件以及受检测物体。基于本次讨论目

荧光显微镜:内置了照明和滤光片用于成像

相机技术的发展进步使生物应用和工业应用中的显微镜发生了革命性的变化。因此,生物学家或工程师再也无需耗费数小时使用目镜进行观察和不断地对焦。此外,当今的数字视频显微镜系统也简化了数据记录和数据分析的流程。更多有关此系统类型的一般信息,请参阅数字视频显微镜调整件设置。要真正了解数字视频显微镜系统的好处,