小鼠破骨细胞分化方案

破骨细胞是高度分化的多核巨细胞,主要来源于单核/巨噬细胞造血干细胞系,是一种具有骨吸收功能,在骨代谢方面起着关键性作用的细胞,因而机体对于破骨细胞的调控非常严格,在破骨细胞分化成熟的过程中,RANK /RANKL/OPG系统起着分化调控枢纽的作用,是调节破骨细胞分化成熟的关键信号途径。核因子κB 受体活化因子配体(Receptor Activator for Nuclear Factor-κB Ligand ,RANKL)被认为是促进破骨细胞最为分化成熟及其功能活性最重要的因子,M-CSF可诱导RANK在破骨细胞前体的细胞膜上表达,进而使表达RANK的破骨前体细胞和RANKL结合并产生效应,诱导破骨细胞分化。因此在体外诱导破骨细胞分化过程中RANKL和M-CSF两种细胞因子缺一不可。 然而有不少科研工作者在诱导分化破骨细胞(尤其是小鼠破骨细胞)时会遇到诱导不稳定,诱导效率低等问题,PeproTech......阅读全文

小鼠破骨细胞分化方案

破骨细胞是高度分化的多核巨细胞,主要来源于单核/巨噬细胞造血干细胞系,是一种具有骨吸收功能,在骨代谢方面起着关键性作用的细胞,因而机体对于破骨细胞的调控非常严格,在破骨细胞分化成熟的过程中,RANK /RANKL/OPG系统起着分化调控枢纽的作用,是调节破骨细胞分化成熟的关键信号途径。核因子κB

小鼠破骨细胞分化因子(ODF)ELISA试剂盒-注意事项

  小鼠破骨细胞分化因子(ODF)ELISA试剂盒 注意事项:   1. 试剂盒从冷藏环境中取出应在室温平衡15-30分钟后方可使用,酶标包被板开封后如未用完,板条应装入密封袋中保存。   2. 浓洗涤液可能会有结晶析出,稀释时可在水浴中加温助溶,洗涤时不影响结果。   3. 各步加样均应使用

破骨细胞的演变

  破骨细胞由多核巨细胞(multi nuclear giant cell,MNGC)组成,直径100μm,含有2~50个紧密堆积的核,主要分布在骨质表面、骨内血管通道周围。由多个单核细胞融合而成的,胞浆嗜碱性但随着细胞的老化,渐变为嗜酸性。  破骨细胞的分离培养始于20世纪80年代,到2018年7

破骨细胞的作用

  破骨细胞以其骨质吸收功能为人所知晓。而且作为骨组织成分的一种,行使骨吸收(bone resorption)的功能。破骨细胞与成骨细胞(osteoblast,亦称bone-forming cells)在功能上相对应。二者协同,在骨骼的发育和形成过程中发挥重要作用。高表达的抗酒石酸酸性磷酸酶(tar

破骨细胞的来源

  破骨细胞是由骨髓中的髓系祖细胞分化而成的单核巨噬细胞相互融合,所形成的多核巨细胞。早期未成熟的增殖性单核吞噬细胞被称为破骨细胞前体,在化学因子的作用下进入血液循环,再在基底多细胞单位所释放的信号因子的作用下进入骨结构腔体,在各种化学因子、转录因子、细胞因子等信号因子的刺激下融合为多核细胞并最终活

破骨细胞的结构

破骨细胞是一个大的多核细胞,骨上的人类破骨细胞通常有五个细胞核,直径为150–200µm。当使用破骨细胞诱导细胞因子将巨噬细胞转化为破骨细胞时,会出现直径可能达到100µm的非常大的细胞。它们可能有几十个细胞核,通常表达主要的破骨细胞蛋白,但由于非天然基质,它们与活骨中的细胞有显着差异。多核组装破骨

破骨细胞的形态

破骨细胞由多核巨细胞(multinuclear giant cell, MNGC)组成,直径100μm,含有2~50个紧密堆积的核,主要分布在骨质表面、骨内血管通道周围。由多个单核细胞融合而成的,胞浆嗜碱性但随着细胞的老化,渐变为嗜酸性。

什么是破骨细胞

破骨细胞(osteoclast,亦称bone-resorbingcells)是骨细胞的一种,行使骨吸收(boneresorption)的功能。破骨细胞与成骨细胞(osteoblast,亦称bone-formingcells)在功能上相对应。二者协同,在骨骼的发育和形成过程中发挥重要作用。  破骨细胞

什么是破骨细胞?

破骨细胞是一种骨细胞,破骨细胞打破了骨组织。此功能在维护、修复是关键和重塑的骨头的的脊椎骨骼。破骨细胞通过分泌酸和胶原酶在分子水平上分解和消化水合蛋白质和矿物质的复合物,这一过程称为骨吸收。这个过程也有助于调节血钙水平.在进行再吸收的那些骨表面上发现了破骨细胞。在这样的表面上,破骨细胞被认为位于称为

破骨细胞的功能

一旦被激活,破骨细胞就会通过趋化性移动到骨骼中的微骨折区域。破骨细胞位于称为Howship\'s腔的小腔中,由底层骨骼的消化形成。密封区是破骨细胞质膜与下方骨骼的连接。密封区由称为足体的特殊粘附结构带界定。整合素受体(例如αvβ3)通过骨基质蛋白(例如骨桥蛋白)中的特定氨基酸基序Arg-Gl

小鼠可溶性破骨细胞异化因子(RANKL)ELISA试剂盒

小鼠可溶性破骨细胞异化因子(RANKL)ELISA试剂盒 (用于血清、细胞培养上清液和生物体液内) 原理本实验采用双抗体夹心 ABC-ELISA法。用抗小鼠 RANKL 单抗包被于酶标板上,标准品和样品中的 RANKL与单抗结合,加入生物素化的抗小鼠RANKL,形成免疫复合物连接在板上,辣根过氧化物

破骨细胞的研究发展

自从它们于1873年被发现以来,关于它们的起源一直存在相当大的争论。三种理论占主导地位:1949年至1970年流行结缔组织起源,认为破骨细胞和成骨细胞属于同一谱系,成骨细胞融合在一起形成破骨细胞。经过多年的争论,现在很清楚这些细胞是从巨噬细胞的自我融合发展而来的。1980年初,单核细胞吞噬系统被认为

人软骨细胞的分化

试剂和材料: 1.分化培养基:DMEM/F12(1:1)、1%ITS(胰岛素、转铁蛋白、硒;V/V)、TGF-eta;1 1ng/ml、HEPES 10mmol/L; 2.胰蛋白酶/EDTA:胰蛋白酶(0.05%)和EDTA(0.53mmol/L)A配制; 3.A:无Ca2+,Mg2+的

人软骨细胞的分化

试剂和材料:1. 分化培养基:DMEM/F12(1:1)、1%ITS(胰岛素、转铁蛋白、硒;V/V)、TGF-β1 1ng/ml、HEPES 10mmol/L;2. 胰蛋白酶/EDTA:胰蛋白酶(0.05%)和EDTA(0.53mmol/L)PBSA配制;3. PBSA:无Ca2+,Mg2+的Dul

破骨细胞研究的临床展望

  破骨细胞功能异常会造成骨质吸收的异常,若其功能亢进,会引起骨退行性病变如骨质疏松症、癌症的骨转移、关节炎等;若其功能障碍或衰退,会造成骨硬化症、致密性成骨不全、Paget’s病、大块骨溶解病等。  骨相关疾病的药物主要从破骨细胞的分化、功能与凋亡三方面影响其对骨质的吸收过程。因RANK/RANK

破骨细胞的来源及作用

  来源  破骨细胞是由骨髓中的髓系祖细胞分化而成的单核巨噬细胞相互融合,所形成的多核巨细胞。早期未成熟的增殖性单核吞噬细胞被称为破骨细胞前体,在化学因子的作用下进入血液循环,再在基底多细胞单位所释放的信号因子的作用下进入骨结构腔体,在各种化学因子、转录因子、细胞因子等信号因子的刺激下融合为多核细胞

破骨细胞的演变及来源

  演变  破骨细胞由多核巨细胞(multi nuclear giant cell,MNGC)组成,直径100μm,含有2~50个紧密堆积的核,主要分布在骨质表面、骨内血管通道周围。由多个单核细胞融合而成的,胞浆嗜碱性但随着细胞的老化,渐变为嗜酸性。  破骨细胞的分离培养始于20世纪80年代,到20

正常成熟破骨细胞原代培养

实验材料:1. 细胞来源:新生大鼠或兔,妊娠6个月以内的引产胎儿等;2. 清洗液:不含Ca2+和Mg2+的1×,添加100IU/ml青霉素、100μg/ml链霉素,pH7.2;3. 细胞支持物:薄骨片、盖玻片;4. 培养液:199培养基、MEM或DMEM培养基均可,须补加15%—20%小牛血清、25

正常成熟破骨细胞原代培养

实验材料:1. 细胞来源:新生大鼠或兔,妊娠6个月以内的引产胎儿等;2. 清洗液:不含Ca2+和Mg2+的1×PBS,添加100IU/ml青霉素、100μg/ml链霉素,pH7.2;3. 细胞支持物:薄骨片、盖玻片;4. 培养液:199培养基、MEM或DMEM培养基均可,须补加15%—20%小牛血清

骨肉瘤的新细胞起源以及STK11/LKB1对骨癌的发病影响-2

破骨细胞前体细胞的Lkb1缺陷不会诱导成骨肿瘤样表型 破骨细胞抗酒石酸酸性磷酸酶(TRAP)染色发现,Ctsk-CKO小鼠的骨膜、骨内膜和松质骨的破骨细胞数量增加。研究人员还利用Ctsk-CKO和Ctsk-Ctrl小鼠的骨髓细胞分化为破骨细胞。TRAP活性定量显示,来自Ctsk-CKO骨髓细胞的破骨

巨噬细胞集落刺激因子的作用

  破骨细胞的分化受多种细胞及其产物的调节,其中M-CSF与RANKL的作用尤为关键。  M -CSF与RANKL是迄今为止发现的直接参与破骨细胞分化的两种细胞因子。日本长崎大学生物医学研究院的KitauraH及其同事在小鼠正畸牙齿移动模型中研究了抗c-Fms抗体对力学负荷诱导的破骨细胞形成和骨质溶

MSCs分化为矿化的成骨细胞

试剂和材料:完全培养基(CCM):α-MEM:α-低限量基础培养基,含谷氨酰胺,无核苷酸或脱氧核苷酸;添加:20%附加L-谷氨酰胺 2mmol/L、经FBS杂交瘤纯化,非热灭活、青霉素100U/ml、链霉素100μg/ml。过滤除菌。储存于4℃,不超过2周;BDM(骨分化培养基):CCM包含5mmo

Nature-medicine:骨质疏松,表观遗传研究有进展

  近日,来自日本的科学家们在国际期刊nature medicine上发表了他们的最新研究进展,他们发现DNA甲基转移酶3a(DNMT3a)在调节骨代谢与骨细胞分化方面具有重要作用。  研究人员指出,当细胞所处环境发生变化,细胞会进行代谢重组以进行应答,进而调节细胞分化过程,但联系代谢过程与分化过程

降钙素对成骨细胞的重要作用

  降钙素是由甲状腺C细胞分泌的多肽类激素,它是维持体内钙磷代谢的重要激素,降钙素通过抑制破骨细胞活性和数量,促进成骨细胞的形成而参与骨代谢(张永莉等,2005):近年来被广泛地用于治疗以急性或慢性骨丢失为特征的疾病,如变形性骨炎、老年性骨质疏松症、高钙血症和恶性骨质溶解症等。降钙素是强有力的破骨细

骨肉瘤的新细胞起源以及STK11/LKB1对骨癌的发病影响

  中国科学院上海生物化学与细胞生物学研究所和中山大学肿瘤防治中心/肿瘤医学协同创新中心等机构的研究人员利用条件性敲除的成骨肿瘤小鼠模型,鉴定出骨膜源性Ctsk-Cre细胞是成骨肿瘤的起源细胞,并提出一个治疗成骨肿瘤的有希望的新靶点——LKB1-mTORC1途径。  【背景】  成骨肿瘤(osteo

”骨肉瘤的新细胞起源以及STK11/LKB1对骨癌的发病影响

  成骨肿瘤(osteogenic tumor)是骨组织最常见的原发性肿瘤,包括良性骨形成肿瘤、骨瘤、成骨细胞瘤和恶性肿瘤(又称为成骨源性肉瘤或骨肉瘤)。骨肉瘤主要在儿童和青少年人群中高发,老年人位列第二发病率高峰。由于传统化疗生存效益不理想,因此预后较差,当前迫切需要更多针对性和个性化的治疗骨肉瘤

“少年杀手”骨肉瘤的新细胞起源以及STK11/LKB1对骨癌-影响

  成骨肿瘤(osteogenic tumor)是骨组织最常见的原发性肿瘤,包括良性骨形成肿瘤、骨瘤、成骨细胞瘤和恶性肿瘤(又称为成骨源性肉瘤或骨肉瘤)。骨肉瘤主要在儿童和青少年人群中高发,老年人位列第二发病率高峰。由于传统化疗生存效益不理想,因此预后较差,当前迫切需要更多针对性和个性化的治疗骨肉瘤

溶解骨骼的破骨细胞在太空更活跃

  宇航员长期逗留在太空中,会导致骨密度降低。日本研究人员利用青鳉进行研究,发现在无重力的太空环境下,溶解骨骼的破骨细胞非常活跃,从而减少骨量。这一发现弄清了骨量在无重力环境下减少的部分机制,还将有助于探明人类随着年纪增加而出现骨质疏松症的原因。   机体中存在着分解骨质的破骨细胞和形成骨骼的成骨细

Cell-|-RANKL刺激下破骨细胞的命运追踪

    骨骼提供支架来支撑体重,确保身体运动,保护重要器官,控制矿物质稳态,同时也为造血提供位置。骨骼是一个动态更新的器官,在整个生命周期内,骨骼会持续重塑。破骨细胞吸收旧骨,成骨细胞形成新骨,两者在时间和空间上的协同作用,参与调节骨骼的重塑。破骨细胞是由单核细胞/巨噬细胞造血谱系前体细胞融合形成的

我国学者在骨源性因子调控造血研究方面取得进展

图 破骨细胞表达IL-34诱导髓系细胞和AML细胞分化的机制模式图  在国家自然科学基金项目(批准号:81991510、81991511、82100155)等资助下,南方医科大学白晓春、张月教授团队与南方科技大学肖国芝教授团队合作,在破骨细胞来源的IL-34诱导髓系细胞和急性髓系白血病(AML)细胞