β-内酰胺酶耐药及对策

β-内酰胺酶的分类,主要包括分子结构分类(根据氨基酸序列的不同)及根据β-内酰胺酶底物谱和酶抑制剂谱分型(Bush 1995分型)两种。分子结构分类可以将β-内酰胺酶分为A、B、C、D四类,该分类将超广谱β-内酰胺酶(ESBLs)归于其中A类,质粒型头孢菌素酶(Amp C酶)归为C类,而金属酶被归为B类。 1、ESBLs 临床一旦发现由ESBLs造成的耐药情况,我们可以采取以下措施:①如果确认为产ESBLs菌株,则不能使用包括三代头孢菌素在内的β-内酰胺类抗生素,即使体外实验敏感,体内治疗也往往无效。②应用抗生素与β-内酰胺酶抑制剂合剂,如阿莫西林+克拉维酸、替卡西林+克拉维酸、头孢哌酮+舒巴坦、哌拉西林+他唑巴坦、美洛西林+舒巴坦等。③非β-内酰胺类抗生素如氨基糖甙类、喹诺酮类仍对产ESBLs细菌保持一定的疗效,但产ESBLs细菌如携带对氨基糖甙类、喹喏酮类药物......阅读全文

你知道什么是ESBLs肺炎克雷伯菌吗?

肺炎克雷伯菌是肠杆菌科克雷伯菌属中非常重要的菌种之一,广泛分布于自然界的水和土壤中,是人类鼻咽部和肠道常居菌,也是常见的条件致病菌,可引起人类肺炎、脑膜炎、泌尿系统感染、脓毒症等各种感染性疾病,也是医院感染的重要病原菌之一。这些感染很多无明显特征,其严重性可能被低估。   肺炎

关于耐药细菌的常见种类介绍

  由于抗菌药物的广泛使用,全球耐药情况非常严峻,应该说所有细菌都已经有耐药现象发现,对抗菌药物完全敏感的细菌几乎不存在了,但根据耐药的严重程度,可以称为超级耐药细菌的主要有:  (1)耐甲氧西林金黄色葡萄球菌(MRSA)。  (2)耐万古霉素肠球菌(VRE)。  (3)耐万古霉素葡萄球菌(VRSA

细菌的主要耐药机制

1.产生灭活抗生素的各种酶1.1 β—内酰胺酶(β-lactamase)  β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的

微生物检验必须掌握的三大耐药机制

微生物检验必须掌握的三大耐药机制  你知道什么是微生物检验吗?你对微生物检验了解吗?下面是我为大家带来的关于微生物检验必须要知道的三大耐药机制的知识,欢迎阅读。   一、产生灭活抗生素的各种酶   1、 β—内酰胺酶(β-lactamase)  β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基

鲍曼不动杆菌耐药机制

(一)对ß-内酰胺类抗生素的耐药机制    1)质粒介导或染色体突变使细菌产生ß-内酰胺酶通过水解或非水解方式破坏ß-内酰胺环使抗生素失活这是大多数病菌对ß-内酰胺类抗生素产生耐药的主要机制。金属酶属Ambler B类ß-内酰胺酶属于Bush功能分类3群。根据金属ß-内酰胺酶的底物特

肺炎克雷伯菌的耐药机制

  肺炎克雷伯菌(Kpn)是临床分离及医院感染的重要致病菌之一,随着β-内酰胺类及氨基糖苷类等广谱抗菌素的广泛使用,细菌易产生超广谱β-内酰胺酶(ESBLs)和头孢菌素酶(AmpC酶)以及氨基糖苷类修饰酶(AMEs),对常用药物包括第三代头孢菌素和氨基糖苷类呈现出严重的多重耐药性。肺炎克雷伯菌引起的

八种常见肺部耐药菌感染的治疗

  近年来,随着抗生素的广泛应用(包括人和动物)、糖皮质激素及免疫抑制剂应用的增加以及老年患者的增多,肺部耐药菌感染问题日益突出。这些耐药菌常见的有耐青霉素肺炎链球菌(penicillin-resistant streptococcus pneumoniae PRSP)、耐甲氧西林金黄色葡萄

细菌耐药趋势与抗感染治疗的若干问题

近几年来,细菌耐药趋势日趋严峻,成为医学界倍受关注的问题。具有重要临床意义的耐药菌有青霉素耐药肺炎链球菌、甲氧西林耐药葡萄球菌、万古霉素耐药肠球菌、β内酰胺类抗生素耐药革兰氏阴性杆菌。上述耐药菌不仅呈逐年增多趋势,且常为多重耐药菌,致使该类菌所致感染的治疗成为临床上的难题,对感染患者的健康和生命直接

卡他莫拉菌的药敏及其耐药机制

卡他莫拉菌一直被认为是呼吸道正常寄居菌群,一般不致病。但近年来的研究表明,该菌可导致多种急慢性感染,如儿童慢性鼻窦炎、中耳炎、脑膜炎、心内膜炎和败血症,现已跃居为小儿呼吸道感染的第3 位致病菌。本菌可产生β-内酰胺酶,使其对抗生素的耐药性较强。一、国内药敏研究现状目前,卡他莫拉菌的致病性已引起国内学

基因疗法的问题及对策

   基因治疗终于回来了,今年是人类基因组计划25周年纪念日,并没有人多少人关注这个。但是当曾经在老鼠身上实验的基因疗法现在用在治疗17个月大的Layla Richards的白血病时候,每个人都在关注着。  虽然基因疗法有着巨大潜力,但刚过去的周年纪念日只有寥寥几家媒体进行了报道,这也看出了近四分之

PCR常见问题及对策

PCR常见问题及对策(一)没有得到扩增产物(1)酶失活或在反应体系中未加入酶。Taq DNA聚合酶因保存或运输不当而失活,往往通过更换新酶或用另一来源的酶以获得满意的结果。(2)模板含有杂质。特别是对甲醛固定及石蜡包埋的组织常含甲酸,造成DNA脱嘌呤而影响PCR的结果。(3)变性温度是否准确:PCR

什么是βLac、ESBLs、MRSA、MRCNS?

β-Lac:β-内酰胺酶的缩写(β-Lactamase),也即青霉素酶。是由某些细菌所产生,能产生β-Lac的细菌,可以使青霉素迅速水解而失效,所以,若遇这类菌株感染,使用青霉素和其他不耐酶的β-内酰胺类药物治疗均无效,如乙酰基、羧基、酰脲基青霉素等。反之,不产生β-Lac的菌株,对其它青霉素敏感,

细菌耐药机理及其耐药细菌的检测与临床

全球面临主要耐药问题 ?  MRS(Methicilln-Resistant Stapylococci) 耐甲氧西林葡萄球菌包括MRSA,MRSE等。 ?  VIA(Vancomycin-Intermediate Staphyococcus Aurus) 万古霉素中介的金葡菌 ?  VRE(Vanc

细菌耐药性及其临床意义

当前医院内外的新的耐药菌在不断出现,常导致手术治疗失败、并发症增多、感染复发、住院时间延长、昂贵抗生素及其它药物的使用增加等。耐药株还随着国际贸易及旅游业的高速发展而在全球蔓延。由于新抗生素的广泛使用,各个细菌对抗生素的耐药谱不断在发生变化,特别是耐药性经常以多重耐药为特点,有时甚至

细菌耐药性及其临床意义

当前医院内外的新的耐药菌在不断出现,常导致手术治疗失败、并发症增多、感染复发、住院时间延长、昂贵抗生素及其它药物的使用增加等。耐药株还随着国际贸易及旅游业的高速发展而在全球蔓延。由于新抗生素的广泛使用,各个细菌对抗生素的耐药谱不断在发生变化,特别是耐药性经常以多重耐药为特点,有时甚至

细菌耐药性及其临床意义

当前医院内外的新的耐药菌在不断出现,常导致手术治疗失败、并发症增多、感染复发、住院时间延长、昂贵抗生素及其它药物的使用增加等。耐药株还随着国际贸易及旅游业的高速发展而在全球蔓延。由于新抗生素的广泛使用,各个细菌对抗生素的耐药谱不断在发生变化,特别是耐药性经常以多重耐药为特点,有时甚

细菌耐药性及其临床意义

当前医院内外的新的耐药菌在不断出现,常导致手术治疗失败、并发症增多、感染复发、住院时间延长、昂贵抗生素及其它药物的使用增加等。耐药株还随着国际贸易及旅游业的高速发展而在全球蔓延。由于新抗生素的广泛使用,各个细菌对抗生素的耐药谱不断在发生变化,特别是耐药性经常以多重耐药为特点,有时甚至找不到可治之药。

细菌耐药性及其临床意义

当前医院内外的新的耐药菌在不断出现,常导致手术治疗失败、并发症增多、感染复发、住院时间延长、昂贵抗生素及其它药物的使用增加等。耐药株还随着国际贸易及旅游业的高速发展而在全球蔓延。由于新抗生素的广泛使用,各个细菌对抗生素的耐药谱不断在发生变化,特别是耐药性经常以多重耐药为特点,有时甚至找不到可治之药

产超广谱β一内酰胺酶铜绿假单胞菌的耐药性探讨

铜绿假单胞菌由于分离率高、耐药性广泛,其感染治疗困难、死亡率高.并时有暴发流行而成为医院感染和抗生素耐药的新热点,也是临床治疗的难点一 。近年来,由于第三代头孢菌素的大量应用,大肠埃希菌和肺炎克雷伯菌甚至铜绿假单胞菌(pseudomonas aeruginosa,PA)都相继出现了超广谱 内

PBPs与革兰阴性菌的相互关系介绍

  革兰阴性菌因其外膜蛋白较薄,因而膜的穿透能力变化较大。而膜孔蛋白通道非常狭窄,能对大分子及疏水性化合物的穿透形成有效屏障,外膜屏障使细菌对抗菌药物产生不同程度的固有耐药性,且多数革兰阴性细菌产生β-内酰胺酶。导致革兰阴性菌β-内酰胺类药物耐药的机制主要是青霉素结合蛋白各种亚单位编码基因突变导致P

细菌耐药性的病理机制

  1、产生灭活酶:细菌产生灭活的抗菌药物酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着

铜绿假单胞菌耐药性的基因学研究进展

铜绿假单胞菌(Pseudomonas aeruginosa,PA)又称绿脓杆菌,是引起急性或慢性感染的最常见的条件致病菌之一,由其引起的院内感染往往治疗难度极大,几乎具有目前已知的细菌主要耐药机制,已成为引起院内获得性肺炎多重耐药革兰阴性菌的代表。PA 感染是治疗的难题,归其原因,在于其广泛而多重的

铜绿假单胞菌耐药性的基因学研究进展

铜绿假单胞菌(Pseudomonas aeruginosa,PA)又称绿脓杆菌,是引起急性或慢性感染的最常见的条件致病菌之一,由其引起的院内感染往往治疗难度极大,几乎具有目前已知的细菌主要耐药机制,已成为引起院内获得性肺炎多重耐药革兰阴性菌的代表。PA 感染是治疗的难题,归其原因,在

β内酰胺类抗生素

第三十六章  β-内酰胺类抗生素                 第一节  抗菌机制、作用类型及耐药性一、抗菌作用机制  通过抑制细菌细胞壁粘肽合成酶的活性而阻碍细胞壁粘肽的合成,使细菌胞壁缺损,菌体膨胀裂解。由于哺乳动物无细胞壁,不受β-内酰胺类抗生素的影响,故对机体的毒性小。研究证实,细菌细胞壁

ESBL是什么

ESBL:Extended-Spectrum β-Lactamases,中文指超广谱 β-内酰胺酶,是一类能水解青霉素酶类,头孢菌素类以及单环类抗生素的 β-内酰胺酶,其活性能被某些β-内酰胺酶抑制剂抑制。能产生ESBL的细菌即为ESBL(+)菌,可对上述多种抗生素产生耐药。在革兰阳性菌中,葡萄球菌

临床化学检查方法介绍β内酰胺酶介绍

β-内酰胺酶介绍:  β-内酰胺酶是指能催化水解生物分子中β -内酰胺环中的的酰胺键的灭活酶。细菌产生β- 内酰胺酶是细菌对β -内酰胺类抗生素耐药的主要机制。  β- 内酰胺酶类抗生素包括青霉素类 ,头孢菌素类 ,非典型 β- 内酰胺类等 ,是品种最多 ,研究进展最快 ,临床应用最广泛的一大类药物

生化检测项目β内酰胺酶介绍

β-内酰胺酶介绍:  β-内酰胺酶是指能催化水解生物分子中β -内酰胺环中的的酰胺键的灭活酶。细菌产生β- 内酰胺酶是细菌对β -内酰胺类抗生素耐药的主要机制。  β- 内酰胺酶类抗生素包括青霉素类 ,头孢菌素类 ,非典型 β- 内酰胺类等 ,是品种最多 ,研究进展最快 ,临床应用最广泛的一大类药物

儿科重症监护病房耐药菌的分布问题

  在儿科重症病房(PICU)或是新生儿重症监护病房(NICU)工作,最让人头痛的,就是细菌耐药的问题,以及耐药菌的抗生素选择问题。作此文,主要是希望让大家能对PICU及NICU的耐药菌分布及药物的使用有一个较为直接的了解。    大家知道,凡是住PICU或NICU中的患儿,往往病情较重,免疫力

医院感染常见革兰阴性杆菌——肠杆菌科细菌及耐药率

肠杆菌科细菌是临床细菌感染性疾病中最重要的致病菌, 该细菌是一大群形态、生物学性状相似的革兰阴性杆菌。这类细菌多数周身有鞭毛,有动力,均能发酵葡萄糖,需氧或厌氧生长。在自然界广泛分布,大多是人体肠道正常菌群,也可存在于土壤、水和腐质上,少数为致病菌。包括埃希氏菌属、沙门氏菌属、志贺氏菌属、克

细菌耐药性检测方法

1、细菌耐药表型检测:判断细菌对抗菌药物的耐药性可根据NCCLS标准,通过测量纸片扩散法、肉汤稀释法和E试验的抑菌圈直径、MIC值和IC值获得。也可通过以下方法进行检测:(1)耐药筛选试验:以单一药物的单一浓度检测细菌的耐药性被称为耐药筛选试验,临床上常用于筛选耐甲氧西林葡萄球菌、万古霉素中介的葡萄