β-内酰胺酶耐药及对策
β-内酰胺酶的分类,主要包括分子结构分类(根据氨基酸序列的不同)及根据β-内酰胺酶底物谱和酶抑制剂谱分型(Bush 1995分型)两种。分子结构分类可以将β-内酰胺酶分为A、B、C、D四类,该分类将超广谱β-内酰胺酶(ESBLs)归于其中A类,质粒型头孢菌素酶(Amp C酶)归为C类,而金属酶被归为B类。 1、ESBLs 临床一旦发现由ESBLs造成的耐药情况,我们可以采取以下措施:①如果确认为产ESBLs菌株,则不能使用包括三代头孢菌素在内的β-内酰胺类抗生素,即使体外实验敏感,体内治疗也往往无效。②应用抗生素与β-内酰胺酶抑制剂合剂,如阿莫西林+克拉维酸、替卡西林+克拉维酸、头孢哌酮+舒巴坦、哌拉西林+他唑巴坦、美洛西林+舒巴坦等。③非β-内酰胺类抗生素如氨基糖甙类、喹诺酮类仍对产ESBLs细菌保持一定的疗效,但产ESBLs细菌如携带对氨基糖甙类、喹喏酮类药物......阅读全文
β-内酰胺酶耐药及对策
β-内酰胺酶的分类,主要包括分子结构分类(根据氨基酸序列的不同)及根据β-内酰胺酶底物谱和酶抑制剂谱分型(Bush 1995分型)两种。分子结构分类可以将β-内酰胺酶分为A、B、C、D四类,该分类将超广谱β-内酰胺酶(ESBLs)归于其中A类,质粒型头孢菌素酶(Amp C酶)归
细菌耐药与临床对策
近年来由于抗生素的广泛应用,细菌的耐药问题越来越严重。历史和现实的教训告诉我们:任何一种抗生素一旦问世,很快就会产生耐药株,产生耐药株的时间周期短则几年,长则十几年(表1)。目前,细菌的耐药问题已成为全球的严重问题,为此WHO专门发表了针对细菌耐药问题的专家建议(WHO/CDS/CS
细菌耐药与临床对策
近年来由于抗生素的广泛应用,细菌的耐药问题越来越严重。历史和现实的教训告诉我们:任何一种抗生素一旦问世,很快就会产生耐药株,产生耐药株的时间周期短则几年,长则十几年(表1)。目前,细菌的耐药问题已成为全球的严重问题,为此WHO专门发表了针对细菌耐药问题的专家建议(WHO/CDS/CS
细菌耐药与临床对策
近年来由于抗生素的广泛应用,细菌的耐药问题越来越严重。历史和现实的教训告诉我们:任何一种抗生素一旦问世,很快就会产生耐药株,产生耐药株的时间周期短则几年,长则十几年(表1)。目前,细菌的耐药问题已成为全球的严重问题,为此WHO专门发表了针对细菌耐药问题的专家建议(WHO/CDS/CSR/DRS/20
耐药机制详解之β内酰胺酶
β-内酰胺类抗生素是目前临床抗感染治疗最普遍应用的一类抗生素,随着这类药物的广泛使用(特别是滥用和误用)和致病菌的变迁,产生了病原菌对药物的耐药性问题,而且耐药发生率相当高。细菌产生β-内酰胺酶(β-lactamase)是80%病原菌耐药的原因之一,另外约12%和8%病原菌的耐药分别与细
耐药机制详解之β内酰胺酶
β-内酰胺类抗生素是目前临床抗感染治疗最普遍应用的一类抗生素,随着这类药物的广泛使用(特别是滥用和误用)和致病菌的变迁,产生了病原菌对药物的耐药性问题,而且耐药发生率相当高。细菌产生β-内酰胺酶(β-lactamase)是80%病原菌耐药的原因之一,另外约12%和8%病原菌的耐药分别与细菌细胞外膜通
细菌耐药与临床对策(一)
近年来由于抗生素的广泛应用,细菌的耐药问题越来越严重。历史和现实的教训告诉我们:任何一种抗生素一旦问世,很快就会产生耐药株,产生耐药株的时间周期短则几年,长则十几年(表1)。目前,细菌的耐药问题已成为全球的严重问题,为此WHO专门发表了针对细菌耐药问题的专家建议(WHO/CDS/CSR/DRS/
细菌耐药与临床对策(二)
1.2.2 DNA拓扑异构酶的改变引起喹诺酮类抗生素耐药 喹诺酮类药物的作用机制主要是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用。细菌DNA拓扑异构酶有I、Ⅱ、Ⅲ、Ⅳ,喹诺酮类药物的主要作用靶位是拓扑异构酶Ⅱ和拓扑异构酶Ⅳ。拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形
复合酶存在的问题及对策
目前,在饲料中添加的酶制剂都是由微生物生产的。利用微生物来生产酶制剂的两种方法,一是固体发酵,二是液体发酵。目前国产复合酶大多为固体发酵,生产的复合酶质量不稳定,发酵水平和酶蛋白的产量也较低。另外我国饲料厂颗粒饲料制粒温度普遍较高,温度对复合酶的酶活性有不同程度的影响,降低了酶制剂的使用
β内酰胺类抗生素的耐药机制
细菌对β-内酰胺类抗生素耐药机制可概括为: ① 细菌产生β-内酰胺酶(青霉素酶、头孢菌素酶等)使易感抗生素水解而灭活; ② 对革兰阴性菌产生的β-内酰胺酶稳定的广谱青霉素和第二、三代头孢菌素,其耐药发生机制不是由于抗生素被β-内酰胺酶水解,而是由于抗生素与大量的β-内酰胺酶迅速、牢固结合,使
医院铜绿假单胞菌耐药性变迁及临床对策
摘要: 目的 探讨医院内铜绿假单胞菌(PAE) 的耐药性及其变迁,指导临床合理用药。方法 对2001~2003 年病房临床分离的PAE 1126 株, 用26 种抗菌药物进行药敏实验。结果 三代头孢菌素的头孢他啶耐药率为30.91 % ,头孢哌酮/ 舒巴坦的总耐药率为19.97 % ,四
细菌对β内酰胺类抗生素耐药机制
① 细菌产生β-内酰胺酶(青霉素酶、头孢菌素酶等)使易感抗生素水解而灭活; ② 对革兰阴性菌产生的β-内酰胺酶稳定的广谱青霉素和第二、三代头孢菌素,其耐药发生机制不是由于抗生素被β-内酰胺酶水解,而是由于抗生素与大量的β-内酰胺酶迅速、牢固结合,使其停留于胞膜外间隙中,因而不能进入靶位(PBP
细菌对β内酰胺类抗生素耐药机制
① 细菌产生β-内酰胺酶(青霉素酶、头孢菌素酶等)使易感抗生素水解而灭活; ② 对革兰阴性菌产生的β-内酰胺酶稳定的广谱青霉素和第二、三代头孢菌素,其耐药发生机制不是由于抗生素被β-内酰胺酶水解,而是由于抗生素与大量的β-内酰胺酶迅速、牢固结合,使其停留于胞膜外间隙中,因而不能进入靶位(PBP
概述细菌对β内酰胺类抗生素耐药机制
① 细菌产生β-内酰胺酶(青霉素酶、头孢菌素酶等)使易感抗生素水解而灭活; ② 对革兰阴性菌产生的β-内酰胺酶稳定的广谱青霉素和第二、三代头孢菌素,其耐药发生机制不是由于抗生素被β-内酰胺酶水解,而是由于抗生素与大量的β-内酰胺酶迅速、牢固结合,使其停留于胞膜外间隙中,因而不能进入靶位(PBP
34株多重耐药铜绿假单胞菌β内酰胺酶基因及Ⅰ类整合子...
34株多重耐药铜绿假单胞菌β内酰胺酶基因及Ⅰ类整合子检测分析【摘要】 目的:探讨我院临床分离多重耐药铜绿假单胞菌的β-内酰胺酶相关基因及Ⅰ类整合子(intⅠ1和qacE△1-sul1)的携带情况,为临床抗感染治疗和控制医院感染提供依据。方法:采用K-B法对临床分离的铜绿假单胞菌进行药敏试验
质粒介导的超广谱β内酰胺酶的耐药性问题及检验
近年来,耐药性的问题正日益成为全球医药界共同关注的焦点,细菌对抗生素耐药的机制包括:(1)细胞膜通透性的改变,使抗生素不能,或很少透入细菌体内到达作用靶位;(2)灭活酶或钝化酶的产生,如产生β内酰胺酶,使抗生素失效;(3)与抗生素结合靶位(亲和力)的改变,使抗生素的作用下降;(4)其他,如主动外排系
耐亚胺培南鲍曼不动杆菌的耐药性分析及金属β内酰胺酶
作者:雷金娥, 袁莉, 李和平, 马列婷, 王亚文, 曾晓艳 作者单位:西安交通大学医学院第一附属医院检验科,陕西西安 710061【摘要】 目的 了解我院鲍曼不动杆菌的耐药性及其产金属β-内酰胺酶(MBLs)的情况。方法 采用K-B纸片扩散法测定13种抗菌药物的耐药性;分别用金属螯合剂乙二
耐亚胺培南鲍曼不动杆菌的耐药性分析及金属β内酰胺酶
作者:雷金娥, 袁莉, 李和平, 马列婷, 王亚文, 曾晓艳 作者单位:西安交通大学医学院第一附属医院检验科,陕西西安 710061【摘要】 目的 了解我院鲍曼不动杆菌的耐药性及其产金属β-内酰胺酶(MBLs)的情况。方法 采用K-B纸片扩散法测定13种抗菌药物的耐药性;分别用金属螯合剂乙二
属β内酰胺酶与绿脓假单胞菌亚胺培南耐药
绿脓假单胞菌是临床常见条件致病菌,尤其是在医院感染中占有非常重要的位置。由于对其多种抗生素耐药使得临床抗生素的选择越来越受到限制。亚胺培南(imipenem)为碳青霉烯类抗生素,有极强的抗菌活性,8 mg/L浓度的亚胺培南可抑制98%以上的临床主要致病,对沙雷菌属、不动杆菌属、绿脓假单胞菌
耐亚胺培南鲍曼不动杆菌的耐药性分析及金属β内酰胺酶3
对于金属酶的表型检测目前国际上还没有统一的标准,本试验采用的方法是根据文献报道略加改进。因为金属酶的活性激活需要Zn离子的存在,所以用金属离子的螯合剂可以导致金属酶失活,抑菌圈增大。使用较多的螯合剂是EDTA,也有国外学者报道使用2-巯基丙酸效果优于EDTA[5],国内也有相同或相似的方法[14
耐亚胺培南鲍曼不动杆菌的耐药性分析及金属β内酰胺酶2
1.1.3 仪器和试剂 全自动微生物鉴定系统VITEK 2为法国生物梅里埃生产;水解酪蛋白(MH琼脂)为OXID公司产品;乙二胺四乙酸(EDTA)为重庆化学试剂厂产品。 1.2 方法 1.2.1 药敏试验 采用K-B纸片扩散法。严格按照临床实验室标准化研究所(CLSI)推荐的纸片
PCR污染及解决对策
聚合酶链反应(polymerase chain reaction, PCR)是一种选择性体外扩增DNA或RNA片段的方法,在微生物感染的诊断中具有重要的价值。在PCR扩增过程中,扩增的DNA产量是呈指数上升的,经过n个循环的扩增,一个DNA分子的产量便达到2n个拷贝。PCR产物一般为1013拷贝/
抗微生物药物耐药性的产生与对策(一)
耐药性(resistance) 又称抗药性,是微生物对抗微生物药物的相对抗性。微生物产生耐药性是自然界的规律。生物进化论早就指出 “适者生存” 。即微生物耐药性的产生,是耐药基因长期进化的必然结果, 并非在抗微生物药物问市之后才出现。大千世界,有矛就有盾, 有抗微生物药物就一定有对抗微生
抗微生物药物耐药性的产生与对策(二)
微生物耐药率不断增加 全球性抗微生物药物的大量应用和滥用, 无疑给微生物增加了极大的“抗菌压力”, 促使耐药菌株不断地增加。在一般情况下, 只要减少这种压力, 耐药率就会降低。这就是为什么因国家、地区、时间的不同而耐药率有显著差异的根本原因。为此, 不能照搬各国的抗微生物指南和教科书。200
抗微生物药物耐药性的产生与对策(四)
在具体方法中,除了根据药物的药效学/药动学参数制定给药方案外,最新的办法是关闭或缩小突变选择窗(Mutant Selection Window, MSW),最大限度的延长MSW。所谓MSW就是MPC与MIC之间的范围, 即以MPC(防突变浓度,Mutant Prevention Conc
抗微生物药物耐药性的产生与对策(三)
微生物耐药率不断增加的原因主要是:不合理使用和滥用,如美国用于人类抗感染与农牧业应用各占50%,其中用于院内抗感染仅占20%,而社区却占了80%,滥用率为20%~50%;在农牧业中治疗性应用仅占20%,而预防和促生长应用却占了80%,滥用率为40%~80%,每年有4万死亡病例是由耐药菌所致。我国的滥
研究发现细菌铁离子稳态与β内酰胺类药物耐药相关性
4月17日,国家现代农业产业(水禽)体系免疫抑制病防控岗位专家、四川农业大学动物医学院动物医学免疫学研究所程安春/刘马峰团队在期刊Journal of Antimicrobial Chemotherapy发表题为《鸭疫里默氏杆菌IetA介导的铁外排通过抑制呼吸与氧化应激增强对β-内酰胺类抗生素氨曲南
细菌耐药表型的检测
β-内酰胺酶检测 β-内酰胺酶(β-lactamase)是细菌产生的可水解β-内酰胺环抗生素的酶。β-内酰胺酶的产生是细菌对(β-内酰胺类)抗菌药物耐药最常见的机制,广泛地涉及到许多社区获得性感染和医院内感染的重要病原菌,在各种耐药机制中占80%。 β-内酰胺酶是由多种酶组成的酶家族,通
细菌耐药性的产生机制及检测方法
一、细菌耐药性和产生机制1、细菌耐药性的概念:细菌的耐药性是指致病微生物对于抗菌药物作用的耐受性和对抗性。它是抗菌药物、细菌本身及环境共同作用的结果。它可分为天然耐药和获得性耐药,前者通过染色体DNA突变而致,后者大多是由质粒、噬菌体及其他遗传物质携带外来DNA片段导致的耐药性的产生。 2、细菌耐药
esbls菌是什么
肺炎克雷伯菌是肠杆菌科克雷伯菌属中非常重要的菌种之一,广泛分布于自然界的水和土壤中,是人类鼻咽部和肠道常居菌,也是常见的条件致病菌,可引起人类肺炎、脑膜炎、泌尿系统感染、脓毒症等各种感染性疾病,也是医院感染的重要病原菌之一。这些感染很多无明显特征,其严重性可能被低估。 肺炎