人类ABO血型继承自灵长类祖先

ABO血型是导致输血时溶血反应发生的决定性因素之一,可能造成溶血性贫血、肾衰竭、休克以至死亡,也是人类中最早被发现的遗传多态性。一项新研究表示,人类ABO血型与其他灵长类动物共有,而且在数百万年前首次于一个共同祖先身上出现。 血型是以血液抗原形式表现出来的一种遗传性状。ABO血型由红细胞膜上的不同抗原所决定,由于与溶血反应密切相关,具有重要的临床意义。而且,ABO抗原也存在于其他一些灵长类动物体内。 美国霍华休斯医学研究中心的Laure Ségurel及其同事分析了各种灵长类物种的ABO血型遗传数据。科研人员确定了带来A型和B型血型的两个氨基酸在人类、猩猩、长臂猿、猕猴和狒狒身上是一样的,相关研究成果刊登在新一期的美国《国家科学院院刊》上。 研究人员指出,最新的分析结果表明,在遗传上距离我们更远的新大陆猴共享了这种血型系统的遗传基础。这种血型很可能最初出现在一个遥远的灵长类祖先身上,然后在人类、长......阅读全文

新灵长类大脑图谱

  长期以来,科学家们一直难以找到全面绘制灵长类大脑神经元之间连接结构的工具。来自冷泉港实验室的神经科学家在日本进行的新研究重建了狨猴大脑三维立体图像,以及整个大脑的神经连接,这是迄今为止最详细的灵长类大脑图谱,文章发表在《eLife》杂志。  该研究引入了结合实验和计算的新方法,有助于解释个体大脑

美评估非人灵长类研究政策

   美国国立卫生研究院(NIH)将仔细审查由联邦资助的实验室中非人灵长类动物的使用情况。作为对一项国会命令的回应,该机构今年夏季将召开一场研讨会,回顾围绕猴子、狒狒以及其他相关动物研究的伦理政策和程序。在此之前,NIH已决定结束其下属一家实验室存在争议性的猴子实验,并终止了对黑猩猩侵入性实验的经费

灵长类动物结构变异的机制

  2013年度基因组生物学大会(The Biology Of Genomes 2013)于5月7日晚在美国纽约冷泉港实验室召开。这是基因组学领域最大的会议之一,吸引了多个著名研究所的大牛参加。会议主题包括高通量基因组学和遗传学、复杂性状的遗传学、功能和癌症基因组学、计算基因组学、进化基因组学以

复旦学者发现灵长类大脑发育规律

  记者近日从复旦大学获悉,该校脑科学研究院、医学神经生物学国家重点实验室教授杨振纲率领课题组,在大脑皮质发育研究方面取得新进展。   研究人员发现,同为灵长类的人类和猕猴的大脑皮质的抑制性神经元,均起源于胚胎时期的基底神经节隆起部位,而不是科学界长期以来所认为的来自大脑皮质本身。该成果可能为治疗

人类ABO血型继承自灵长类祖先

    ABO血型是导致输血时溶血反应发生的决定性因素之一,可能造成溶血性贫血、肾衰竭、休克以至死亡,也是人类中最早被发现的遗传多态性。一项新研究表示,人类ABO血型与其他灵长类动物共有,而且在数百万年前首次于一个共同祖先身上出现。   血型是以血液抗原形式表现出来的一种遗传性状。A

酶多态性介绍

中文名称酶多态性英文名称enzyme polymorphism;multiple forms of an enzyme定  义在单一物种中天然存在的、具有相同酶活性的多种蛋白质形式。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

酶的多态性

酶的遗传多态性表现为许多酶都在存在同工酶的现象。同工酶(isozyme或isoenzyme)是指分子结构不同的酶,可催化相同化学反应,这类酶称为同工酶。同工酶不仅可存在于不同个体。也可存在于不同的组织中,甚至在同一细胞的不同细胞器中有同工酶。

“所思同步”或是灵长类神经机制的关键

  英国《自然》杂志旗下《科学报告》近日发表的一项神经科学研究称,美国科学家首次同时测量了两只猴子的脑活动,发现社交可导致猴子的大脑活动同步,而这种“所思同步”或是灵长类动物社交联系和社交学习背后的神经机制的一个关键部分。   脑活动是人类积极探索的重要领域之一。目前大多数脑研究,主要方法都是探

“所思同步”或是灵长类神经机制的关键

  科技日报北京4月1日电 英国《自然》杂志旗下《科学报告》近日发表的一项神经科学研究称,美国科学家首次同时测量了两只猴子的脑活动,发现社交可导致猴子的大脑活动同步,而这种“所思同步”或是灵长类动物社交联系和社交学习背后的神经机制的一个关键部分。   脑活动是人类积极探索的重要领域之一。目前大多数

美或修改灵长类动物豁免条例

  近日,美国渔业和野生动物管理局(FWS)被要求考虑废除一项豁免条例,该条例允许捕捉11种在《濒危物种法案》(ESA)名录中的灵长类动物。如果FWS接受该建议,那么这些被捕获的动物将被视为受到威胁,如此一来,研究人员就必须为相关实验申请许可。目前,相关条例的改变可能会对使用俄勒冈州数百只日本猕猴的

灵长类动物能区分熟人面孔

   近日,研究人员在猕猴大脑中鉴别出两个新区域,似乎能帮助该动物识别“熟人”面孔。  科学界早就知道,由于社会阶层对包括人类在内的灵长类动物的日常生活十分重要,因此它们必须能区分面部差别,并判断敌友。但科学家一直不清楚灵长类动物大脑如何处理面部图像。  鉴于猕猴脑部处理面孔信息的系统与人类相似,美

灵长类心脏衰老的驱动因素揭示

  心脏是为人体血液循环提供动力的重要器官,而左心室是心脏将血液泵至全身各处的核心腔室。随着年龄的增长,左心室结构及功能逐渐衰退,心血管疾病的患病风险增加。  心脏是由心肌细胞、成纤维细胞、内皮细胞等多种细胞类型组成的复杂器官,由于不同类型细胞衰老程度存在差异,需要高精度的研究手段加以解析。迄今为止

Science:灵长类动物胚胎发育之谜

  原肠胚形成(gastrulation)是发育中的里程碑事件,它涉及早期胚胎发生中出现的一系列复杂的分子、物理和能量重塑转变。不同物种间的这种转变过程各不相同,导致地球上动物形态的多样性。由于技术和伦理上的限制,灵长类动物原肠胚形成的分子和细胞机制尚不清楚。缺乏处于原肠胚形成阶段的灵长类动物胚胎样

生物多态性的概念

生物多态性是指地球上所有生物,从食物链系统、物种水平、群体水平、个体水平、组织和细胞水平、分子水平、基因水平等层次上体现出的形态(morphism)和状态(state)的多样性。

DNA多态性的概念

DNA多态性是指群体内某个基因座存在2个或多个等位基因形成而造成的同种DNA分子的多样性,是单一基因座等位基因变异性在群体水平的体现。凡在群体中出现频率大于1%的变异体,不论其是正常还是致病性,称多态性;频率低于1%的变异体,则考虑为突变。

单链构象多态性

单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常

DNA多态性的概念

DNA多态性在人群中不同个体之间的基因产物大多数是一致的,但每个个体在遗传上还是有所不同的,这种个体之间的差异从本质上讲是DNA碱基顺序存在的差异,它是通过用内切酶切割不同个体的基因组DNA出现不同长度的片段而被发现的,并通过孟德尔方式遗传,称为DNA多态性。

生物多态性的类型

遗传和变异这一对既对立又统一的内在矛盾,在外在环境的影响下相互作用,促生了生物群体遗传多态性的存在,进而提供了物种进化的动力。根据一个群体中各种变异类型的比例,可以把遗传多态性分为两种类型:平衡型:一个群体中各种变异类型的比数可以长期保持不变,呈现所谓平衡型(或稳定)多态现象;过渡型:一个群体中各种

遗传多态性的产生

用分子生物学的术语来定义,遗传多态性就是一种孟德尔单基因性状,在同一正常群体中的同一基因位点上具有多种等位基因引起,并在环境影响下,由此导致生物机体遗传结构所产生的多种物理表现和可见性状。自然选择是造成遗传多态性的主要原因。多态现象的遗传机制的研究有助于对生物进化过程的了解。影响遗传多态性的因素很多

什么是DNA多态性?

DNA多态性是指群体内某个基因座存在2个或多个等位基因形成而造成的同种DNA分子的多样性,是单一基因座等位基因变异性在群体水平的体现。凡在群体中出现频率大于1%的变异体,不论其是正常还是致病性,称多态性;频率低于1%的变异体,则考虑为突变。

遗传多态性现象度量

遗传多态性现象是指同一生物群体中,两种或两种以上变异类型或基因型并存的现象。一般认为每种变异型的频率超过1%即可定为多态现象,不足1%的称为罕见变异型。由于生物的遗传多态性是通过多方面表现的,对遗传多态性应该进行多角度的综合评价,避免应用单一方法进行研究。形态学研究具有检测直观、相关文献资料丰富、研

DNA多态性的概念

DNA多态性是指群体内某个基因座存在2个或多个等位基因形成而造成的同种DNA分子的多样性,是单一基因座等位基因变异性在群体水平的体现。凡在群体中出现频率大于1%的变异体,不论其是正常还是致病性,称多态性;频率低于1%的变异体,则考虑为突变。

基因多态性的定义

基因多态性(gene polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为DNA基因多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度

基因多态性的成因

1、等位基因复等位基因(multiple allele)是指位于一对同源染色体上对应位置的一对基因。由于群体中的突变,同一座位的基因系列称为复等位基因。某些复合体基因的每一座位都存在为数众多的复等位基因,这是某些复合体(HLA)高度多态性的最主要原因。2、共显性共显性(condominance)是指

杨振纲小组发现灵长类大脑发育规律

复旦大学脑科学研究院教授杨振纲课题组,在最新的一项研究中发现同为灵长类的人类和猕猴的大脑皮质抑制性神经元,均起源于胚胎时期的基底神经节隆起部位,而不是科学界长期以来所认为的来源于大脑皮质本身。该成果可能为治疗癫痫和自闭症等脑疾病提供新思路和新手段。日前,相关研究在线发表于《自然—神经科学》。  神经

联合研究揭示灵长类卵巢衰老的分子机制

  卵巢是重要的女性生殖器官,其衰老表现包括卵母细胞数量减少、质量下降,及雌性生殖力降低等。由于伦理及样本来源的限制,将人类正常卵巢组织用于卵巢生理性衰老的研究难度较大,限制了对人类卵巢衰老机制的深入理解,并进一步制约了女性卵巢衰老及相关疾病干预手段的发展。  膜生物学国家重点实验室与北京大学联合,

人类并非唯一肥胖的灵长类动物

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508298.shtm

基因多态性芯片检测原理?

基因芯片技术是将基因片段有序地固定在玻璃载体上,通过被检测者口腔黏膜脱落细胞DNA抽提,通过合成引物后扩增,用荧光标记的DNA片段上与之杂交、洗脱、结果扫描、软件提取并分析数据的一种快速、高效的分子生物学分析手段。   通过合理的探针设计和杂交条件的严格控制,基因芯片可应用于多种类

单链构象多态性简介

  单链构象多态性,在一定条件下, 单链DNA可形成特有的二级结构。不同 DNA链上单个碱基的改变可引起其二级结 构的改变,从而改变DNA链在非变性胶中 的电泳迁移率形成的多态性称作单链构象多 态性。单链DNA片段呈复杂的空间折叠构 象。这种立体结构主要是由其内部碱基配对 等分子内相互作用力来维持的

补体遗传多态性的检测

补体遗传多态性的检测大多分二步进行,第一步是用琼脂糖高压电泳或聚丙烯酰胺等电聚焦电泳将EDTA抗凝血浆通过凝胶电泳,根据分子量的大小、所带电荷的多少及等电点(pI)将血浆蛋白分开。第二步是免疫固定或溶血鉴定,琼脂糖高压电泳或聚丙烯酰胺等电聚焦后,在凝胶板上铺上抗补体某一成分的抗血清,使其与凝胶板上的