仿刺参肠道再生和皂苷合成研究取得重要进展

非编码RNA中的miRNA和tRNA在基因表达调控中扮演重要角色,然而在棘皮动物中相关研究非常缺乏。 近日,记者从中科院海洋所了解到,该所实验海洋生物学重点实验室研究员李富花课题组通过多组学数据整合分析,揭示了棘皮动物miRNA和tRNA基因的组织结构特点、进化历史和表达调控机制,以及它们在海参肠道再生和皂苷合成等生物学过程中的重要作用。相关研究成果分别发表在国际学术期刊《基因组学》和英国皇家学会《开放生物学》。 据介绍,研究人员鉴定和注释了112个仿刺参miRNA家族,其中70个为新家族;提出了miRNA基因簇进化的“功能性表达”新模型,揭示了表达量控制和背景选择作用在miRNA基因簇形成中的重要作用,发现仿刺参表达量最高的新miRNA家族聚集在一个特殊的n2基因簇中,通过抑制RFP和CTBP进而激活Wnt通路促进肠道再生。 在tRNA研究方面,研究人员发现,各种tRNA的拷贝数与其翻译的特定氨基酸的转录组丰度成正......阅读全文

tRNA的结构

1.tRNA结构保守:70-80个碱基。2.二级结构:三叶草。3.五个主要臂:(1)接受臂:携带氨基酸;(2)TΨC臂;(3)反密码子臂;(4)双氢尿嘧啶臂(DHU);(5)附加臂:大小反映了整个tRNA分子的大小,根据其大小,tRNA分为两类:第Ⅰ类tRNA,3/4 tRNA只有3-5个碱基的附加

tRNA的结构特征

tRNA的结构特征之一是含有较多的修饰成分,如上面提到的 D、T、 Ψ等;核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。1974年用X射线晶体衍射法测出第一个tRNA——酵母苯丙氨酸tRNA晶体的三维结构,分子全貌象倒写的英文字母L,呈扁平状,长

tRNA的结构基础

tRNA的二级结构如图1所示,其在原核生物和真核生物均相对保守。主要结构有D-loop(D环)、T(C)-loop(T环)、Anticodon-loop(反密码子环)、Accepter Arm(受体臂)、3'端CCA保守序列、Discriminator(识别碱基)、Variable-loop

tRNA的结构介绍

1.tRNA结构保守:70-80个碱基。2.二级结构:三叶草。3.五个主要臂:(1)接受臂:携带氨基酸;(2)TΨC臂;(3)反密码子臂;(4)双氢尿嘧啶臂(DHU);(5)附加臂:大小反映了整个tRNA分子的大小,根据其大小,tRNA分为两类:第Ⅰ类tRNA,3/4 tRNA只有3-5个碱基的附加

非编码RNA调控仿刺参肠道再生和皂苷合成研究新进展

  非编码RNA中的miRNA和tRNA在基因表达调控中扮演重要角色,然而在棘皮动物中相关研究较缺乏。中国科学院海洋研究所研究员李富花课题组通过多组学数据整合分析,揭示了棘皮动物miRNA和tRNA基因的组织结构特点、进化历史和表达调控机制,以及它们在海参肠道再生和皂苷合成等生物学过程中的重要作用。

非编码RNA调控仿刺参肠道再生和皂苷合成研究获进展

非编码RNA中的miRNA和tRNA在基因表达调控中扮演重要角色,然而在棘皮动物中相关研究较缺乏。中国科学院海洋研究所研究员李富花课题组通过多组学数据整合分析,揭示了棘皮动物miRNA和tRNA基因的组织结构特点、进化历史和表达调控机制,以及它们在海参肠道再生和皂苷合成等生物学过程中的重要作用。相关

非编码RNA调控仿刺参肠道再生和皂苷合成研究获进展

  非编码RNA中的miRNA和tRNA在基因表达调控中扮演重要角色,然而在棘皮动物中相关研究较缺乏。中国科学院海洋研究所研究员李富花课题组通过多组学数据整合分析,揭示了棘皮动物miRNA和tRNA基因的组织结构特点、进化历史和表达调控机制,以及它们在海参肠道再生和皂苷合成等生物学过程中的重要作用。

阻抑tRNA的结构特点

中文名称阻抑tRNA英文名称suppressor tRNA定  义能够消除信使核糖核酸(mRNA)突变有害结果的突变转移RNA(tRNA)。生物体内蛋白质基因或mRNA的突变往往产生有害的结果,但它可被同一基因的第二次突变或其他基因(包括tRNA基因)的突变所消除。应用学科生物化学与分子生物学(一级

同工tRNA的结构特点

同工tRNA(cognate tRNA):指几个代表相同氨基酸、能够被一个特殊的氨酰-tRNA合成酶识别的tRNA。

关联tRNA的结构特点

中文名称关联tRNA英文名称cognate tRNA定  义由同一特异氨酰tRNA合成酶识别的所有tRNA。应用学科遗传学(一级学科),分子遗传学(二级学科)

仿刺参肠道再生和皂苷合成研究取得重要进展

  非编码RNA中的miRNA和tRNA在基因表达调控中扮演重要角色,然而在棘皮动物中相关研究非常缺乏。  近日,记者从中科院海洋所了解到,该所实验海洋生物学重点实验室研究员李富花课题组通过多组学数据整合分析,揭示了棘皮动物miRNA和tRNA基因的组织结构特点、进化历史和表达调控机制,以及它们在海

仿刺参肠道再生和皂苷合成研究取得重要进展

   非编码RNA中的miRNA和tRNA在基因表达调控中扮演重要角色,然而在棘皮动物中相关研究非常缺乏。  近日,记者从中科院海洋所了解到,该所实验海洋生物学重点实验室研究员李富花课题组通过多组学数据整合分析,揭示了棘皮动物miRNA和tRNA基因的组织结构特点、进化历史和表达调控机制,以及它们在

脱酰tRNA的结构特点

中文名称脱酰tRNA英文名称deacylated tRNA定  义脱去酰基(氨酰基或肽酰基)的转移核糖核酸(tRNA)。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

含硒tRNA的结构特点

中文名称含硒tRNA英文名称selenium-containing tRNA定  义通常指含硒代半胱氨酸或硒代甲硫氨酸的转移核糖核酸(tRNA)。分别参与含硒代半胱氨酸或硒代甲硫氨酸的硒蛋白的合成。从一些细菌、哺乳动物和植物中分离得到。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

tRNA前体的结构特点

中文名称tRNA前体英文名称tRNA precursor定  义转移核糖核酸(tRNA)基因转录的初始产物,需经过多步加工才能产生成熟的、有功能的tRNA分子。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

肽酰tRNA的结构特点

中文名称肽酰tRNA英文名称peptidyl tRNA定  义肽酰基通过酯键连接在转移核糖核酸的3′端CCA的A(腺苷)的羟基上形成的化合物。蛋白质生物合成时,肽酰tRNA中的肽链逐步延伸。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

tRNA二级结构特点

tRNA的二级结构为三叶草结构,其结构特征为:  (1)tRNA的二级结构由四臂、四环组成,已配对的片断称为臂,未配对的片断称为环。  (2)叶柄是氨基酸臂,其上含有CCA-OH3’,此结构是接受氨基酸的位置。  (3)氨基酸臂对面是反密码子环,在它的中部含有三个相邻碱基组成的反密码子,可与mRNA

什么叫做外源性RNA和内源性RNA

核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA

起始tRNA-的结构和功能特点

起始tRNA initiation tRNA是指能特异性地认别mRNA上的起始密码子,是使蛋白质合成开始的tRNA。在细胞中有两种甲硫氨酸tRNA分子,其中的一种就起这种作用。在大肠杆菌中,已接受甲硫氨酸的tRNAfMet在被甲酰化之后,以其30S核糖体亚基与mRNA共同结合,使蛋白质合成开始。即使

MicroRNA(miRNA)的结构和用途

MicroRNA(miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发

氨酰tRNA的结构和功能特点

中文名称氨酰tRNA英文名称aminoacyl tRNA定  义转移核糖核酸的3′端通过酯键与氨基酸连接生成,进入核糖体的A位参与蛋白质生物合成。由氨酰tRNA合成酶催化tRNA与活化氨基酸(即氨酰AMP)反应得到。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

甲硫氨酸tRNA的结构和功能特点

中文名称甲硫氨酸tRNA英文名称methionine tRNA定  义真核生物的一种起始tRNA,携带甲硫氨酸进入核糖体,进入新生肽链的N端。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

转移核糖核酸的tRNA的结构特征

tRNA的结构特征之一是含有较多的修饰成分,如上面提到的 D、T、 Ψ等;核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。1974年用X射线晶体衍射法测出第一个tRNA——酵母苯丙氨酸tRNA晶体的三维结构,分子全貌象倒写的英文字母L,呈扁平状,长

曹博团队联合MIT开创RNA绝对定量测序新技术

  RNA高通量测序技术(RNA-seq)是研究基因表达与调控领域的重要技术手段。然而目前RNA测序技术只能实现相对定量,以及无法检测含表观遗传修饰或复杂高级结构的RNA分子,阻碍了RNA组学研究的进一步发展。  2021年4月15日,Nature Biotechnology 在线发表了曲阜师范大学

高通量快速验证miRNA靶基因

尽管现在人们可以越来越准确地预测microRNA的沉默效果,但还是需要高通量而且准确的直接验证技术来验证microRNA的沉默效果。microRNA 这个在生物科学史上具有重要意义的小分子,在2008年又一次成为了世人瞩目的焦点。microRNA通过与目标mRNA的3’UTR区域结合来阻止其翻译

特定的tRNA基因的表达促进肿瘤转移

Cell重大发现:tRNAs促进肿瘤转移转运RNAs(tRNAs)最初被认为是基因表达的静态参与者,但是6月2号,洛克菲勒大学的H. Goodarzi研究团队在Cell上发表的文章证明,tRNA也是基因表达的动态调节器,可影响疾病进展。接下来让我们一起来看看他们的研究成果吧。H. Goodarzi研

特定的tRNA基因的表达促进肿瘤转移

Cell重大发现:tRNAs促进肿瘤转移转运RNAs(tRNAs)最初被认为是基因表达的静态参与者,但是6月2号,洛克菲勒大学的H. Goodarzi研究团队在Cell上发表的文章证明,tRNA也是基因表达的动态调节器,可影响疾病进展。接下来让我们一起来看看他们的研究成果吧。H. Goodarzi研

转录组测序原理

而转录组测序即是利用高通量测序技术,将细胞或组织中的全部或部分mRNA, miRNA, lnc RNA 进行测序分析的技术。通过RNA-seq,也就是转录组测序,可以帮助我们了解各种比较条件下所有基因的表达差异包括:正常组织与肿瘤组织;药物治疗前后的表达差异;发育过程中,不同发育阶段,不同组织的表达

mRNA,tRNA,rRNA的结构特点及功能对比

1、mRNA的结构特点是含A、U、G、C四种核苷酸,每三个相联而成一个三联体,即密码,代表一个氨基酸的信息,故按数学中排列组合法则计算,可形成43=64个不同的密码。功能是含有与DNA分子中某些功能片段相对应的碱基序列,作为蛋白质生物合成的直接模板,携带遗传信息能指导蛋白质合成。2、tRNA的结构特

miRNA-mimics-miRNA-inhibitor

miRNA mimics 是模拟生物体 内源的miRNAs,运用化学合成的方法合成,能增强内源性miRNA的功能。miRNA inhibitor 是化学修饰的专门针对细胞中特异的靶miRNA的抑制剂。近年来人工合成的miRNA(artificial miRNA,amiRNA)已经成功应用于沉默预期靶