与单光子共焦显微镜相比,双光子共焦显微镜有何优点

双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒问题 。双光子跃迁具有很强的激发选择性,有利于对生物组织中一些特殊物质进行成像研究。......阅读全文

与单光子共焦显微镜相比,双光子共焦显微镜有何优点

  双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒

与单光子共焦显微镜相比,双光子共焦显微镜有何优点

  双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒

与单光子共焦显微镜相比,双光子共焦显微镜有何优点

  双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒

双光子共焦显微镜有何优点

  双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒

激光扫描共焦显微镜技术

l 样品要求:1.经荧光探剂标记(单标、双标、三标)2.固定的或活的组织3.固定的或活的贴壁培养细胞(Confocal专用小培养皿,盖玻片)4.悬浮细胞,甩片或滴片后,用盖玻片封一. 组成倒置或直立荧光显微镜、扫描头(照明针孔、探测针孔、荧光滤片系统、镜扫描系统和光电倍增管)、扫描头控制电路、计算机

显微镜里,单光子、双光子显微镜的区别

这个以前解释过,单光子就是通常的荧光激发方式,一个光子激发一个荧光分子发光,荧光波长比激发波长稍微长一些;双光子就是用两个光子激发一个荧光分子,激发光子能量小于荧光光子能量,因此激发波长长于荧光波长。现在公认的双光子激发的用途:1. 用于用到红外激发,穿透深度要高于单光子激发,2. 用于需要更高的激

什么是共焦激光扫描显微镜

由德国卡尔·蔡司公司生产的这种显微镜,把激光光束聚焦到生物样品的某个平面,而把该面前后的离焦光束挡掉。这种被称作“光学截面制图”的技术,可以将不同聚焦程度的图像重迭,焦深很大。系统分辨率达0.2微米。尤其是它的三维成像能力,使研究人员可以在原生物样品中“旅游”,或确定吸收荧光染色的细胞组织位置。因此

激光扫描共焦显微镜功能介绍

激光扫描共焦显微镜与激光扫描荧光显微镜结构非常相似,但是由于采用了共焦技术因而更具优越性。这种方法可以在荧光标记分子与DNA芯片杂交的同时进行杂交信号的探测,而无须清洗掉未杂交分子,从而简化了操作步骤大大提高了工作效率。Affymetrix公司的S.P.A.Forder等人设计的DNA芯片即利用此方

激光扫描共焦显微镜技术及应用

l 样品要求:1.经荧光探剂标记(单标、双标、三标)2.固定的或活的组织3.固定的或活的贴壁培养细胞(Confocal专用小培养皿,盖玻片)4.悬浮细胞,甩片或滴片后,用盖玻片封一. 组成倒置或直立荧光显微镜、扫描头(照明针孔、探测针孔、荧光滤片系统、镜扫描系统和光电倍增管)、扫描头控制电路、计算机

共聚焦显微镜的共焦显微技术

共聚焦显微镜有较高的分辨率,而且能观察到样本随时间的变化。因此,共聚焦显微技术在生物学研究领域起着不可或缺的作用。以下为共焦显微技术的几个主要应用方面:  (1)组织和细胞中荧光标记的分子和结构的检测:  利用激光点扫描成像,形成所谓的“光学切片”,进而可以利用沿纵轴上移动标本进行多个光学切片的叠加

共焦显微镜的原理及成像技术

从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。其意义是:通过移动透镜系统可以对一个半透明的物体进行三维扫描。共聚焦显微镜能提供无比准确的三维成像,以及对亚细胞结构和动力学过程的准确测试。共焦显微镜在反射光的

激光共焦显微镜的工作原理分析

 激光共焦显微镜基于模块化概念而设计,可集成多种功能,不仅包括纳米技术,还可灵活升级到受激发射损耗系统(STED)。更有超高分辨率激光扫描共聚焦显微镜,激光共焦显微镜采用独有光学技术,满足您对分辨率的高要求。激光共焦显微镜是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界zui

扫描共焦显微镜术的技术方法介绍

中文名称扫描共焦显微镜术英文名称scanning confocal microscopy定  义在显微镜观测中对样品的一个小点进行照明并同时记录,用这种方式逐点扫描整个视野,就能够组建出二维或三维清晰影像的技术。此法可以采用不同波长的光源,也可以记录透射光或发射光(荧光)。应用学科生物化学与分子生物

激光扫描共焦显微镜技术及应用(一)

样品要求:经荧光探剂标记(单标、双标、三标)2.固定的或活的组织3.固定的或活的贴壁培养细胞(Confocal专用小培养皿,盖玻片)4.悬浮细胞,甩片或滴片后,用盖玻片封一. 组成倒置或直立荧光显微镜、扫描头(照明针孔、探测针孔、荧光滤片系统、镜扫描系统和光电倍增管)、扫描头控制电路、计算机和图像输

激光扫描共焦显微镜技术及应用(二)

五、激光扫描共焦显微镜技术的应用定位、定量三维重组动态测量¨ 活细胞或组织内游离Ca2+浓度的测量¨ 活细胞内H+浓度( pH值)的测量¨ 自由基的检测¨ 药物进入细胞的动态过程、定位分布及定量 应用:细胞膜电位的测量      荧光漂白恢复(FRAP)的测量      笼锁解笼锁的测量     

双光子显微镜的双光子显微镜的优势

双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显

双光子荧光显微镜的优点

双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显

共焦显微镜技术已被用于整个胃肠道

共焦显微镜技术已被用于整个胃肠道的多种用途,通常是为了区分肿瘤和非肿瘤组织,但也有要诊断和确定炎症的状况。有些应用在诊断和临床应用方面相对较好;有些应用有支持性的数据但几乎不用于临床,也有些应用还处于研究之中并且未能满足临床的需求。也许最好的内窥镜共焦技术已经出现在巴雷特的食道监测中。一个随机对照试

激光扫描共焦显微镜术的技术方法介绍

中文名称激光扫描共焦显微镜术英文名称laser scanning confocal microscopy定  义用激光作为光源的共聚焦显微镜技术。应用学科生物化学与分子生物学(一级学科),方法与技术(二级学科)

原子力激光共焦显微镜的使用需求判断

原子力激光共焦显微镜的主要原理是利用激光扫描束通过光栅针孔形成点光源,在荧光标记标本的焦平面上逐点扫描,采集点的光信号通过探测针孔到达光电倍增管,再经过信号处理,在计算机监视屏上形成图像。对于物镜焦平面的焦点处发出的光在针孔处可以得到很好的会聚,可以全部通过针孔被探测器接收。而在焦平面上下位置发出的

激光共焦显微拉曼光谱仪相比传统有什么优势

激光共焦显微拉曼光谱仪比传统的色散型拉曼光谱仪在工作效率,运行速度、分辨率、灵敏度和微量样品分析诸方面都有了很大的提高。它采用先进的光学系统设计及全息滤光片,CCD探测器等先进技术,使仪器的灵敏度及数据采集速度大大提高,总效率(信号/功率!时间)比传统仪器提高了近3个数量级。利用共焦显微拉曼光谱仪作

双光子显微镜简介

双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子

共聚焦的共焦显微

共焦显微技术是由美国科学家M.Minsky在1957年提出的,当时的主要目的是消除普通光学显微镜在探测样品时产生的多种散射光。20世纪60年代通过提高扫描精度突破了普通宽场成像的分辨率限制,在20世纪80年代研制成商用共焦显微镜。共焦显微镜分为普通光照明激发和激光照明激发两种类型,而以后者应用最为广

激光共焦显微镜在生物学方面的应用

  1. 组织和细胞中荧光标记的分子和结构的检测标本制备方法主要有免疫荧光组织和细胞化学法、荧光蛋白标记分子法、荧光细胞染料标记法等。与传统的荧光显微镜相比,除了有较高的分辨率以外,一个主要的不同是激光扫描共聚焦显微镜可以利用激光点扫描成像,形成所谓的“光学切片”,进而可以利用沿纵轴上移动标本进行多

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

LaVision双光子显微镜多线扫描双光子成像(二)

2. 方法与结果    为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神

LaVision双光子显微镜多线扫描双光子成像(三)

2.2.多线TPLSM中通过成像检测释放光    在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠

LaVision双光子显微镜多线扫描双光子成像(四)

2.3. 多线TPLSM中的获取模式    我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧

LaVision双光子显微镜多线扫描双光子成像(一)

Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi