电子探针X射线微区分析的工作原理
电子探针(Electron Probe Microanalysis-EPMA)的主要功能是进行微区成分分析。它是在电子光学和X射线光谱学原理的基础上发展起来的一种高效率分析仪器。 其原理是:用细聚焦电子束入射样品表面,激发出样品元素的特征X射线,分析特征X射线的波长(或能量)可知元素种类;分析特征X射线的强度可知元素的含量。 其镜筒部分构造和SEM相同,检测部分使用X射线谱仪,用来检测X射线的特征波长(波谱仪)和特征能量(能谱仪),以此对微区进行化学成分分析。 X射线谱仪是电子探针的信号检测系统,分为: 能量分散谱仪(EDS),简称能谱仪,用来测定X射线特征能量。 波长分散谱仪(WDS),简称波谱仪,用来测定特征X射线波长。 WDS组成:波谱仪主要由分光晶体和X射线检测系统组成。 原理:根据布拉格定律,从试样中发出的特征X射线,经过一定晶面间距的晶体分光,波长不同的特征X射线将有不同的衍射角。通过连续地改变q,......阅读全文
X射线衍射仪的工作原理
X射线衍射仪工作原理 X射线是利用衍射原理,精确测定物质的晶体结构,织构及应力。对物质进行物相分析、定性分析、定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照
X射线能谱分析对口腔种植界面微区元素的动态检测
观察种植界面微区元素在种植界面形成中的作用。用电子探针X射线能谱分析方法对界面进行百分含量测定。结果表明,钛合金种植体植入后,12周内,钙元素与磷元素逐渐增加并达到峰值,以后趋于平稳,钛元素含量植入后2周较高,以后逐渐减少。种植体与机体组织之间只有极薄的一层纤维膜,已达到骨结合标准。钙元素与磷元素在
微区X射线衍射在矿物鉴定中的应用实例
介绍了微区X射线衍射仪发展的现状,给出了微区X射线衍射仪鉴定物相的研究实例,并讨论了微区X射线衍射法的优、缺点。通过配置有封闭3kWX射线光管、单毛细管透镜、Pixcel探测器和普通CCD视频的Panalytical X’Pert PRO MPDX射线衍射仪,对光片上的铍矿物进行了微区X射线
X射线能谱分析原理
X射线能谱分析原理 X射线能谱定性分析的理论基础是Moseley定律,即各元素的特征X射线频率ν的平方根与原子序数Z成线性关系。同种元素,不论其所处的物理状态或化学状态如何,所发射的 特征X射线均应具有相同的能量。 X射线能谱定性分析是以测量特征X射线的强度作为分析基础,可分为有标样
X射线衍射分析的原理简介
X射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定 波长的X 射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X 射线满足 布拉格(
电子探针X射线显微分析仪的阴极发光介绍
阴极发光是指晶体物质在高能电子的照射下,发射出可见光红外或紫外光的现像。阴极发光现象和发光能力、波长等均与材料基体物质种类和含量有关。阴极发光效应对样品中少量元素分布非常敏感,可以作为电子探针微区分析的一个补充,根据发光颜色或分光后检测波长即可进行元素分析。从阴极发光的强度差异还可以判断一些矿物
X射线能谱微区分析中出射角对X射线强度的影响
利用SEM-EDS研究了硅衬底上Au、Cu薄膜发射的不同线系特征X射线相对强度间比值随出射角的变化规律,探讨了影响其变化的原因。结果显示:随着出射角变大,同一元素不同线系X射线相对强度间比值具有一定变化规律。低能量谱线的强度相对高能量谱线逐渐变大,这种变化主要是受X射线被基体吸收效应的影响所致。在低
微区成分的X射线能谱无标样定量分析简化模型
本文对作者建立的微区成分无标样定量分析法进行了简化,使原有的计算量大为减少。用简化模型对Cu-Si,FeS2,NaCl,GaAs试样和多元钢样原实验数据进行了定量计算,并与原模型多元程序计算结果进行比较。结果表明,这种简化是合理的。
X射线原理
X射线定义X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线之间的电磁波。其波长很短约介于0.01~100埃之间。X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片
X射线晶体定向仪工作原理
利用X射线衍射原理,精密快速地测定天然和人造单晶(压电晶体,光学晶体,激光晶体,半导体晶体)的切割角度,与切割机配套可用于上述晶体的定向切割,是精密加工制造晶体器件不可缺少的仪器·该仪器广泛应用于晶体材料的研究,加工,制造行业。 工作原理 X射线晶体定向仪利用X射线衍射原理,精密快速地测定天
X射线衍射仪工作原理是什么
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的
关于电子探针X射线显微分析仪的结构特点介绍
电子探针X射线显微分析仪(简称电子探针)利用约1Pm的细焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方
x射线粉晶衍射仪的工作原理
x射线粉晶衍射仪主要应用在晶体材料的物相(包括元素、化合物、固溶体)分析,材料的晶格计算,残余应力等方面。主要原理是依据布拉格方程,利用已知波长的X射线照射在样品表面,获得图谱,从而得到所要信息。样品可以是块状也可以是粉末状
x射线衍射仪的工作原理是什么?
对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰。 X射线衍射仪是
x射线衍射仪的工作原理和应用
什么是x射线衍射仪 X射线衍射仪(X-ray diffractometer,XRD)是利用X射线衍射原理研究物质内部结构的一种大型分析仪器。令一束X射线和样品交互,用生成的衍射图谱来分析物质结构。它是在X射线晶体学领域中在原子尺度范围内研究材料结构的主要仪器,也可用于研究非晶体。 x射线衍
X射线的原理
产生X射线的最简单方法是用加速后的电子撞击金属靶。撞击过程中,电子突然减速,其损失的动能(其中的1%)会以光子形式放出,形成X光光谱的连续部分,称之为制动辐射。通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.
X射线管中X射线的产生原理
实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.
矿物的成分测试方法(电子探针显微分析)
电子探针X射线显微分析仪(EPM),简称电子探针,是一种现代成分分析仪器。由于它可以获得矿物微米量级微区内的化学成分,并且无需分离和破坏样品,费用也不高,尤其是对于那些含量少、颗粒微小以及成分不均匀样品的成分分析,提供了有效的分析方法,因此目前在矿物成分研究中应用最广。它除了可以给出一个微区的成分外
X射线能谱分析过程、原理
当X射线光子进入检测器后,在Si(Li)晶体内激发出一定数目的电子空穴对。产生一个空穴对的最低平均能量ε是一定的(在低温下平均为3.8ev),而由一个X射线光子造成的空穴对的数目为N=△E/ε,因此,入射X射线光子的能量越高,N就越大。利用加在晶体两端的偏压收集电子空穴对,经过前置放大器转换成电流脉
X射线荧光分析的原理及应用
X射线荧光分析(XRF)——是对任何种类的样品进行元素分析的好分析技术,无论必需分析的样品是液体、固体还是粉末。XRF可以将高的准确度和精密度与简单和快速的样品准备结合,对铍 (Be) 到铀 (U) 的元素喜迁分析,浓度范围从 100 % 到低至亚 ppm 级。 作为一种确定各种材料化学组成的
X射线荧光分析的原理及应用
X射线荧光分析(XRF)——是对任何种类的样品进行元素分析的好分析技术,无论必需分析的样品是液体、固体还是粉末。XRF可以将高的准确度和精密度与简单和快速的样品准备结合,对铍 (Be) 到铀 (U) 的元素喜迁分析,浓度范围从 100 % 到低至亚 ppm 级。 作为一种确定各种材料
EDX能谱分析:X射线如何工作
与BSE,SE和TE不同,X射线是电磁辐射,就像光一样,由光子组成。为了检测它们,zui新的系统使用了硅漂移探测器(SDD)。由于其具有更高的计数率、更好的分辨率和更快的分析能力,都优于传统的Si(Li)探测器。这些探测器被置于一个特定角度,非常接近样品,并且有能力测量X射线的光子能量。探测器与样品
电子探针的主要用途
电子探针又称微区X射线光谱分析仪、X射线显微分析仪。其原理是利用聚焦的高能电子束轰击固体表面,使被轰击的元素激发出特征X射线,按其波长及强度对固体表面微区进行定性及定量化学分析。主要用来分析固体物质表面的细小颗粒或微小区域,最小范围直径为1μm左右。分析元素从原子序数3(锂)至92(铀)。绝对感量可
电子探针的主要用途
电子探针又称微区X射线光谱分析仪、X射线显微分析仪。其原理是利用聚焦的高能电子束轰击固体表面,使被轰击的元素激发出特征X射线,按其波长及强度对固体表面微区进行定性及定量化学分析。主要用来分析固体物质表面的细小颗粒或微小区域,最小范围直径为1μm左右。分析元素从原子序数3(锂)至92(铀)。绝对感量可
x射线荧光光谱的微区分析技术介绍
铜矿物在自然界存在形式多样,有原生带次生富集带和氧化带等,共生矿物和伴生矿物众多,各类矿物均存在类质同象或者镜下光学特征相似的现象,传统的岩矿鉴定方法利用偏光、反光显微镜或实体显微镜等设备难以鉴别,对于此类矿物的鉴别需要借助化学分析方法或微区分析技术。 微区分析技术(电子探针、同步辐射、全反射
X射线荧光光谱仪工作原理
2.1 X射线荧光的物理原理 X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位nm)描述。 X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足
X射线测厚仪工作原理及主要特点
X射线测厚仪原理是根据X射线穿透被测物时的强度衰减来进行转换测量厚度的,即测量被测钢板所吸收的X射线量,根据该X射线的能量值,确定被测件的厚度。由X射线探测头将接收到的信号转换为电信号,经过前置放大器放大,再由专用测厚仪操作系统转换为显示给人们以直观的实际厚度信号。 X射线源辐射强度的大小,与
x射线荧光光谱仪的工作原理
当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到
简介闪烁X射线探测器的工作原理
闪烁探测器的工作原理是:放射线入射到闪烁体后发出荧光;荧光光子被收集到光电倍增管的光阴极,通过光电效应转换出光电子;光电子通过电子运动并在光电倍增管各级间倍增,最后在阳极输出回路输出信号。闪烁探测器的探测动态范围很宽,对能量在1eV到1GeV范围内的辐射粒子都适用[8],如今己成为最常用的探测器
X射线荧光光谱仪的工作原理
X射线荧光分析技术作为一种快速分析手段,为我国的相关生产企业提供了一种可行的、低成本的、并且是及时的,检测、筛选和控制有害元素含量的有效途径;相对于其他分析方法。 样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。 X射线荧光光谱仪的工作