叶酸受体的结构

叶酸是包括DNA合成、DNA修复和细胞分裂在内的很多生物过程所需的一种必要维他命。“正常”细胞表达数量相对较少的三个叶酸受体,它们在癌细胞中普遍过度表达;为此,它们是新的化疗方法和癌症造影剂的潜在目标。在这篇文章中,作者解决了人叶酸受体在它介导叶酸向细胞中的吸收与叶酸结合在一起的形式的X 射线晶体结构。作者测定了它的“配体结合袋”,并且提供了对于以该受体为目标的新型小分子的开发来说应当会有用的数据。 ......阅读全文

叶酸受体的结构

  叶酸是包括DNA合成、DNA修复和细胞分裂在内的很多生物过程所需的一种必要维他命。“正常”细胞表达数量相对较少的三个叶酸受体,它们在癌细胞中普遍过度表达;为此,它们是新的化疗方法和癌症造影剂的潜在目标。在这篇文章中,作者解决了人叶酸受体在它介导叶酸向细胞中的吸收与叶酸结合在一起的形式的X 射

上海药物所等叶酸受体结构与功能研究进展在Nature上发表

  7月14日, 英国《自然》杂志(Nature)在线发表了中国科学院上海药物研究所徐华强课题组与美国Van Andel研究所Karsten Melcher教授,新加坡国立大学Eu-Liang Yong教授合作的最新研究成果Structural basis for molecular rec

叶酸的结构和功能特点

叶酸是一种水溶性维生素,分子式是C19H19N7O6。因绿叶中含量十分丰富而得名,又名蝶酰谷氨酸。在自然界中有几种存在形式,其母体化合物是由蝶啶、对氨基苯甲酸和谷氨酸3种成分结合而成。

Toll样受体的受体结构

所有Toll样受体同源分子都是Ⅰ型跨膜蛋白,可分为胞膜外区,胞浆区和跨膜区三部分。Toll样受体胞膜外区主要行使识别受体及与其他辅助受体(co-receptor)结合形成受体复合物的功能。Toll样受体的胞浆区与IL-1R家族成员胞浆区高度同源(IL-1R介导的信号传导系统和机制与果蝇类似),该区称

四氢叶酸的结构和功能

四氢叶酸(Tetrahydrogen folic acid,代号为FH4或THFA)是叶酸在体内的主要存在形式,又称辅酶F(CoF),分子式为C19H23N7O6,它是叶酸分子中蝶啶的5、6、7、8位各加一个氢形成的,是辅酶形式的叶酸的母体化合物。接触空气容易氧化  。当叶酸缺乏或某些药物抑制了叶酸

红藻氨酸受体的结构

红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体

Toll样受体的结构

所有Toll样受体同源分子都是Ⅰ型跨膜蛋白,可分为胞膜外区,胞浆区和跨膜区三部分。Toll样受体胞膜外区主要行使识别受体及与其他辅助受体(co-receptor)结合形成受体复合物的功能。Toll样受体的胞浆区与IL-1R家族成员胞浆区高度同源(IL-1R介导的信号传导系统和机制与果蝇类似),该区称

红藻氨酸受体的结构

红藻氨酸受体亚基有五种,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),与AMPA和NMDA受体亚基相似,可以排列以不同的方式形成四聚体,一种四亚基受体。GluR5-7可以形成同聚体(例如,完全由GluR5组成的受体)和异聚体

T细胞受体的结构

T细胞受体是一个固定在细胞膜上的异源二聚体,多数由高度易变的α亚基和β亚基通过二硫键连结构成。这一类T细胞被称为αβ T细胞。少数含有γ亚基和δ亚基被称为γδ T细胞。T细胞受体会与恒定的CD3分子一起构成T细胞受体复合体。每一个亚基都含有两个细胞外的结构域:可变区与恒定区。这些结构域属于免疫球蛋白

什么是叶酸?叶酸的作用

由于最早是从菠菜叶中被分离出来,故名。叶酸的辅酶形式是四氢叶酸(图6[四氢叶酸的结构式]),它作为酶促转移一碳基团(如甲酰基等)的中间载体而在嘌呤类、丝氨酸、甘氨酸和甲基基团的生物合成中起作用。此外,叶酸在核蛋白的生物合成上也是不可缺少的。

细胞表面受体的结构特点

细胞表面受体是细胞表面能与某些特定生物物质结合的特定结构。如T细胞表面的抗原受体、红细胞受体;B细胞表面的Fc受体、C3b受体和抗原受体 (SIg)等。此外,如激素、毒素、病毒和细菌的粘着等亦均存在相应的受体,它们只有与细胞上的受体结合后,才能发挥其生物效应

代谢型受体的结构功能

中文名称代谢型受体英文名称metabotropic receptor定  义一类本身不是离子通道,但可以通过第二信使间接影响离子通道活性的受体。常特指代谢型神经递质受体,特别是代谢型谷氨酸受体。它们与G蛋白偶联,在被激活后通过各种不同的G蛋白调节酶和离子通道等效应分子而产生多种比较缓慢而持续的生理反

T细胞受体的结构特点

T细胞受体是一个固定在细胞膜上的异源二聚体,多数由高度易变的α亚基和β亚基通过二硫键连结构成。这一类T细胞被称为αβ T细胞。少数含有γ亚基和δ亚基被称为γδ T细胞。T细胞受体会与恒定的CD3分子一起构成T细胞受体复合体。每一个亚基都含有两个细胞外的结构域:可变区与恒定区。这些结构域属于免疫球蛋白

Toll样受体的结构特点

Toll样受体(Toll-like receptors, TLR)是参与非特异性免疫(天然免疫)的一类重要蛋白质分子,新近研究发现,TLR能结合机体自身产生的一些内源性分子(即内源性配体)。免疫佐剂可增强抗肿瘤免疫,其分子和细胞机制得到进一步阐明TLR也在其中扮演重要角色。由于肿瘤在发生发展过程中可

G蛋白偶联受体结构介绍

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

核受体的功能结构

核受体家族成员的分子由A/B,C,D,E/F四大具有不同功能的结构域组成:A/B域的N端能够接受配体非依赖的顺式激活,A/B域的C端则调节了该核受体与其他家族成员的结合从而影响核受体与DNA的结合,此外还与核受体对目标DNA的选择有关;保守的C域决定了其DNA结合活性,是核受体的特征性区域,同时影响

甘露糖受体的结构特征

  MR 是C 型凝集素超家族中MR 家族(MR family)中的一员,属钙依赖性Ⅰ型跨膜蛋白受体。MR从N 端到C 端依次为胞外富含半胱氨酸(cysteine-rich,CR)结构域、Ⅱ型纤维连接蛋白(fibronectintype Ⅱ,FNⅡ)结构域、8 个串连的C 型凝集素样结构域(C -t

核受体的功能结构

核受体家族成员的分子由A/B,C,D,E/F四大具有不同功能的结构域组成:A/B域的N端能够接受配体非依赖的顺式激活,A/B域的C端则调节了该核受体与其他家族成员的结合从而影响核受体与DNA的结合,此外还与核受体对目标DNA的选择有关;保守的C域决定了其DNA结合活性,是核受体的特征性区域,同时影响

G蛋白偶联受体结构介绍

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

Nature:肥胖相关受体具有独特结构

  发表在国际著名杂志Nature上的一篇研究论文中,来自日本理化研究所等处的研究人员通过利用名为SPring-8的同步加速器阐明了脂连素两种受体的结构,脂连素是一种和肥胖及糖尿病直接相关的蛋白质,研究人员希望本文研究可以为后期设计新型药物靶向作用AdipoR1和AdipoR2受体来降低和糖尿病相关

B细胞受体的发育和结构

B细胞发育过程中的第一个检查点是生成功能性的B细胞受体前体(pre-BCR)。B细胞受体前体由两条代用免疫球蛋白轻链和两条重链组成,并没有和Ig-α和Ig-β分子相互连接。 B细胞受体的一般结构。包括了膜结合的免疫球蛋白分子和Ig-α/Ig-β信号转导组件。二硫键连接着免疫球蛋白分子和信号转导组件。

Science:热点受体结构纤毫毕现

  研究人员得到了人体细胞膜蛋白前所未有的清晰图像。Leiden研究人员Ad IJzerman、Laura Heitman与其同事得到了一种医学靶点蛋白,G蛋白偶联受体家族A2A腺苷受体分辨率最高的晶体结构,研究发表在Science杂志上。   受体   A2A腺苷受体是人体的主要咖啡因受体

细胞表面受体的概念和结构

细胞表面受体是细胞表面能与某些特定生物物质结合的特定结构。如T细胞表面的抗原受体、红细胞受体;B细胞表面的Fc受体、C3b受体和抗原受体 (SIg)等。此外,如激素、毒素、病毒和细菌的粘着等亦均存在相应的受体,它们只有与细胞上的受体结合后,才能发挥其生物效应

趋化因子受体的种类和结构

(1)趋化因子受体的种类:已发现的趋化因子受体种类有IL-8RA、IL-8RB、MIP-1α/RANTEsR、NCP-1R和细胞趋化因子受体(red blood cell chemokine receptor,RBCCKR)。有人将能与IL-8结合的IL-8RA、IL-8RB和RBCCKR(Duff

细胞因子及其受体的结构

   一、细胞因子的分子结构  不同细胞因子之间的结构上有很大的差异,一般,多数细胞因子为小分子多肽,分子量不超过60kD,多由100个左右的氨基酸组成。不同细胞因子之间无明显的氨基酸序列的同源性。  多数细胞因子以单体形式存在,少数因子如IL-5、IL-12、M-CSF、TGF-β等以双体形式存在

G蛋白偶联受体的结构特点

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

趋化因子受体的种类和结构

(1)趋化因子受体的种类:已发现的趋化因子受体种类有IL-8RA、IL-8RB、MIP-1α/RANTEsR、NCP-1R和细胞趋化因子受体(red blood cell chemokine receptor,RBCCKR)。有人将能与IL-8结合的IL-8RA、IL-8RB和RBCCKR(Duff

α雌激素受体的结构和功能

中文名称α雌激素受体英文名称α-estrogen receptor定  义类固醇激素受体家族中最重要的一员,是激素调节的转录因子的重要代表,在女性生殖组织的生长分化及肿瘤的发生发展、预后中起非常重要的作用。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级学科)

甲状腺激素受体的结构和功能

中文名称甲状腺激素受体英文名称thyroid hormone receptor定  义在细胞核内以原型与染色质结合在一起的蛋白质。有α和β两型,对DNA识别位点有高度亲和性。与甲状腺激素结合后,主要功能是转导与发育和能量产生有关的信息。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级学科

G蛋白偶联受体的结构特点

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有