萤光素酶的基本信息

萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速率非常慢,而钙离子的存在常常可以进一步加速反应(与肌肉收缩的情况相似)。......阅读全文

萤光素酶的基本信息

萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速

萤光素酶的基本信息

萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速

简述萤光素酶的基本信息

  萤光生成反应通常分为以下两步:  萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi  萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光  这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转

萤光素酶的应用

萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞、T

NanoLuc™萤光素酶技术

  NanoLuc™萤光素酶是Promega公司推出一种新型的萤光素酶,它具有分子量更小(19.1kDa, 171个氨基酸),发光更亮,比任何现有的生物发光酶用途更加广泛的特点,它是目前性能最好的生物发光报告基因之一。NanoLuc™萤光素酶的这些属性为报告基因检测提供了新的功能,在需要更高灵敏

NanoLuc™萤光素酶技术

        NanoLuc™萤光素酶是Promega公司推出一种新型的萤光素酶,它具有分子量更小(19.1kDa, 171个氨基酸),发光更亮,比任何现有的生物发光酶用途更加广泛的特点,它是目前性能最好的生物发光报告基因之一。NanoLuc™萤光素酶的这些属性为报

概述萤光素酶的应用

  萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞

萤光素酶的反应机制

萤光生成反应通常分为以下两步:萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能

萤光素酶的应用介绍

萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞、T

关于萤光素酶的简介

  萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应

萤光素酶的生产反应

萤光生成反应通常分为以下两步:萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能

关于萤光素酶的生物发光介绍

  生物发光现象是在生物体内,由于生命过程的变化,化学反应将化学能转化为光能而发光的现象。生物发光在英语中名为bioluminescence,该词为合成词,是由希腊语中代表生命的bios与拉丁语中意为光的lumen组合而成。大部分发光与三磷酸腺苷(ATP)有关,发光的化学反应不限于在细胞内外发生。对

双萤光素酶报告基因检测

  萤光素酶报告基因系统广泛应用于真核生物基因表达和细胞生理学研究,包括受体活性、转录因子、细胞信号转导、mRNA加工和蛋白质折叠等。萤光素酶是理想的报告基因,因为哺乳动物细胞中不含内源性萤光素酶,一旦转录完成立刻就生成功能性的萤光素酶。单萤光素酶报告基因实验往往会受到各种实验条件的影响,而双萤光素

萤火虫萤光素酶在ATP检测中的应用

前言:生物发光是一种在生物体内由酶将化学能转化为光能的现象,在自然界中有超过30种生物发光体系,而我们所熟知的萤火虫的发光体系就是其中研究最早,应用也最广泛的一种。萤火虫的发光现象是由其体内的萤光素酶(luciferase)的催化下三磷酸腺苷(adenosine triphosphate,ATP

关于Promega萤光素酶技术发光史里程碑介绍

  1990年12月,Promega首次提出萤火虫萤光素酶(Luc)作为一种新兴报告基因技术的应用可能性。当时的人们认为,萤火虫萤光素酶具备的生物发光特性、极高的灵敏度和快速简单的检测流程等特点,可能会对分子生物学家的研究产生重要的影响。几个月后,第一代萤火虫萤光素酶报告基因载体和检测试剂在Prom

抑酯酶素的基本信息

中文名称抑酯酶素英文名称esterastin定  义一种由放线菌产生的酯酶抑制剂,可抑制的酯酶包括溶酶体酸性酯酶等。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

纤维素酶-的基本信息

CAS编码 9012-54-8英文通用名称 Cellulase中文通用名称 纤维素酶 性状描述 灰白色无定形粉末或液体。主要作用原理为使纤维素的多糖中β-1,4-葡萄糖水解为β-糊精。作用的最适pH值为4.5~5.5。对热较稳定,即使在100℃下保持min仍可保持原活性的20%(由Myrotheci

纤维素酶的基本信息

纤维素酶(β-1,4-葡聚糖-4-葡聚糖水解酶)是降解纤维素生成葡萄糖的一组酶的总称,它不是单体酶,而是起协同作用的多组分酶系,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶。作用于纤维素以及从纤维素衍生出来的产物。微生物纤维素酶在转化不溶性纤维

纤维素酶的基本信息

纤维素酶(β-1,4-葡聚糖-4-葡聚糖水解酶)是降解纤维素生成葡萄糖的一组酶的总称,它不是单体酶,而是起协同作用的多组分酶系,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶。作用于纤维素以及从纤维素衍生出来的产物。微生物纤维素酶在转化不溶性纤维

D萤光素-Protocol-在生物发光检测中的应用

D-萤光素,萤火虫萤光素酶的化学发光底物,广泛用于体外生物发光、体内活体成像。萤萤之光,照亮您的科研之路! ■ Q: D-萤光素的作用原理D-萤光素 (D-Luciferin) 是萤火虫萤光素酶 (Firefly Luciferase) 的化学发光底物。在ATP 和萤光素酶存在下,萤光素能够被氧化发

生物素羧化酶的基本信息

中文名称生物素羧化酶英文名称biotin carboxylase定  义编号:EC 6.3.4.14。在ATP和CO2(HCO-3)存在的条件下催化生物素-羧基-载体蛋白分子中的生物素第一位氮原子羧基化的酶,是大肠杆菌乙酰辅酶A羧化酶的一个亚基。应用学科生物化学与分子生物学(一级学科),酶(二级学科

关于纤维素酶的基本信息

  纤维素酶(β-1,4-葡聚糖-4-葡聚糖水解酶)是降解纤维素生成葡萄糖的一组酶的总称,它不是单体酶,而是起协同作用的多组分酶系,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶。作用于纤维素以及从纤维素衍生出来的产物。微生物纤维素酶在转化不溶性

生物素羧化酶的基本信息

中文名称生物素羧化酶英文名称biotin carboxylase定  义编号:EC 6.3.4.14。在ATP和CO2(HCO-3)存在的条件下催化生物素-羧基-载体蛋白分子中的生物素第一位氮原子羧基化的酶,是大肠杆菌乙酰辅酶A羧化酶的一个亚基。应用学科生物化学与分子生物学(一级学科),酶(二级学科

硫酸软骨素B酶的基本信息

药品名称硫酸软骨素B酶别    名硫酸皮肤素来    源基因重组酶含    量> 100 IU/mg

纤维素酶的基本信息和功能特点

纤维素酶(英文:cellulase)是酶的一种,在分解纤维素时起生物催化作用。是可以将纤维素分解成寡糖或单糖的蛋白质。纤维素酶广泛存在于自然界的生物体中。细菌、真菌、动物体内等都能产生纤维素酶。一般用于生产的纤维素酶来自于真菌,比较典型的有木霉属(Trichoderma)、曲霉属(Aspergill

萤光显微镜原理

萤光显微镜原理:(A) 光源:光源幅射出各种波长的光(以紫外至红外)。(B) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。 (C) 萤光标本:一般用萤光色素染色。 (D) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射萤光,在萤光中也有部分波长被选择透过。 以紫

绿萤光蛋白的发光原理

我们知道,荧光的发光是被一定波长光激发后,电子被激发到高能级,随后向低能级跃迁的过程中发出比激发光波长更长的荧光,这也就是上面提到的受激辐射。我们将能接受光辐射,并跃迁发出颜色光的基团叫做生色团。绿色荧光蛋白含有一个三肽的单位Ser(65)-Tyr(66)-Gly(67),在蛋白质折叠的时候,这三个

萤光显微镜计数检测

用 + 号表示荧光强度:无荧光(-)、可疑荧光(±)、荧光清楚可见(+)、荧光明亮(++)、荧光闪亮(+++~++++)。

“萤光”闪烁揭示早期星系形成

美国科学家基于韦布空间望远镜的观测数据,发现在宇宙约6亿年时形成的小质量星系——“萤火虫闪烁”的详细观测数据,有助于为早期星系形成提供新知,增进人们对银河系演化的理解。相关研究12月12日发表于《自然》。我们能探测到的最遥远的星系来自宇宙只有当前年龄约5%的时候。不过,这些星系的质量只有银河系的约万

荧光素酶的分析

萤光素或萤光素酶不是特定的分子,而是对于所有能够产生萤光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的萤光素酶来催化不同的发光反应。最为人所知的发光生物是萤火虫,而其所采用不同的萤光素酶与其他发光生物如萤光菇(发光类脐菇,Omphalotus oleariu'