萤光素酶的反应机制
萤光生成反应通常分为以下两步:萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能量都变为热能而被浪费。萤光素或萤光素酶不是特定的分子,而是对于所有能够产生萤光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的萤光素酶来催化不同的发光反应。最为人所知的发光生物是萤火虫,而其所采用不同的萤光素酶与其他发光生物如荧光菇(发光类脐菇,Omphalotus olearius)或许多海洋生物都不相同。在萤火虫中,发光反应所需的氧气是从被称为腹部气管(abdominal trachea)的管道中输入。一些生物,如叩头虫,含有多种不同的萤光素酶,能够催化同一萤光素底物,而发出不同颜色的萤光。萤火虫有2......阅读全文
萤光素酶的反应机制
萤光生成反应通常分为以下两步:萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能
萤光素酶的生产反应
萤光生成反应通常分为以下两步:萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能
萤光素酶的应用
萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞、T
NanoLuc™萤光素酶技术
NanoLuc™萤光素酶是Promega公司推出一种新型的萤光素酶,它具有分子量更小(19.1kDa, 171个氨基酸),发光更亮,比任何现有的生物发光酶用途更加广泛的特点,它是目前性能最好的生物发光报告基因之一。NanoLuc™萤光素酶的这些属性为报
NanoLuc™萤光素酶技术
NanoLuc™萤光素酶是Promega公司推出一种新型的萤光素酶,它具有分子量更小(19.1kDa, 171个氨基酸),发光更亮,比任何现有的生物发光酶用途更加广泛的特点,它是目前性能最好的生物发光报告基因之一。NanoLuc™萤光素酶的这些属性为报告基因检测提供了新的功能,在需要更高灵敏
概述萤光素酶的应用
萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞
关于萤光素酶的简介
萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应
萤光素酶的应用介绍
萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞、T
萤光素酶的基本信息
萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速
萤光素酶的基本信息
萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速
简述萤光素酶的基本信息
萤光生成反应通常分为以下两步: 萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi 萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光 这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转
关于萤光素酶的生物发光介绍
生物发光现象是在生物体内,由于生命过程的变化,化学反应将化学能转化为光能而发光的现象。生物发光在英语中名为bioluminescence,该词为合成词,是由希腊语中代表生命的bios与拉丁语中意为光的lumen组合而成。大部分发光与三磷酸腺苷(ATP)有关,发光的化学反应不限于在细胞内外发生。对
双萤光素酶报告基因检测
萤光素酶报告基因系统广泛应用于真核生物基因表达和细胞生理学研究,包括受体活性、转录因子、细胞信号转导、mRNA加工和蛋白质折叠等。萤光素酶是理想的报告基因,因为哺乳动物细胞中不含内源性萤光素酶,一旦转录完成立刻就生成功能性的萤光素酶。单萤光素酶报告基因实验往往会受到各种实验条件的影响,而双萤光素
萤火虫萤光素酶在ATP检测中的应用
前言:生物发光是一种在生物体内由酶将化学能转化为光能的现象,在自然界中有超过30种生物发光体系,而我们所熟知的萤火虫的发光体系就是其中研究最早,应用也最广泛的一种。萤火虫的发光现象是由其体内的萤光素酶(luciferase)的催化下三磷酸腺苷(adenosine triphosphate,ATP
关于Promega萤光素酶技术发光史里程碑介绍
1990年12月,Promega首次提出萤火虫萤光素酶(Luc)作为一种新兴报告基因技术的应用可能性。当时的人们认为,萤火虫萤光素酶具备的生物发光特性、极高的灵敏度和快速简单的检测流程等特点,可能会对分子生物学家的研究产生重要的影响。几个月后,第一代萤火虫萤光素酶报告基因载体和检测试剂在Prom
ATP酶的反应机制
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进行物质运
ATP酶的反应机制介绍
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。 跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进
三磷酸腺苷酶的反应机制
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进行物质运
三磷酸腺苷酶的反应机制
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进行物质运
三磷酸腺苷酶的反应机制
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进行物质运
纤维素酶的作用机制
1.1提高营养物质的消化吸收 纤维素酶除可以分解纤维素、半纤维素之外,还可以促进植物细胞壁的溶解,使更多的植物细胞内容物溶解出来,并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质,有利于动物胃肠道的消化吸收。 1.2补充内源酶的不足 纤维素酶可以激活内源酶的分泌,补充内源酶的不足,并对
纤维素酶的作用机制
1提高营养物质的消化吸收 纤维素酶除可以分解纤维素、半纤维素之外,还可以促进植物细胞壁的溶解,使更多的植物细胞内容物溶解出来,并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质,有利于动物胃肠道的消化吸收。 2补充内源酶的不足 纤维素酶可以激活内源酶的分泌,补充内源酶的不足,并对内源酶进
产酶益生素的作用机制
1、 促消化机制 产酶益生素的促消化作用主要来源于芽孢杆菌所产生的多中饲料分解酶,它们自身有很强的饲料分解能力,而且还能提高肠道分泌的消化酶的活性。半纤维素酶、大豆抗胰蛋白酶、植酸酶都能促进饲料的消化作用。 2、 促进吸收机制 产酶益生素促进吸收的机制首先在于所产生的半纤维素酶,另外长时间应用产酶益
腺苷三磷酸酶的反应机制
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进行物质运
纤维素酶的反应条件
不同来源的纤维素酶有不同的最佳反应条件。常见的纤维素酶产生菌中,如曲霉、青霉及木霉,产生的酶一般为酸性酶,酶的最适温度大多在45~65℃之间,最适pH值大多在4.0~5.5之间。一些嗜碱和耐碱性的细菌,如Bacillus属中的某些种,可以产生在碱性条件下保持较高活性的纤维素酶。至于海洋细菌,王玢等分
简述腺苷三磷酸酶(ATP酶)的反应机制
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。 跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进
D萤光素-Protocol-在生物发光检测中的应用
D-萤光素,萤火虫萤光素酶的化学发光底物,广泛用于体外生物发光、体内活体成像。萤萤之光,照亮您的科研之路! ■ Q: D-萤光素的作用原理D-萤光素 (D-Luciferin) 是萤火虫萤光素酶 (Firefly Luciferase) 的化学发光底物。在ATP 和萤光素酶存在下,萤光素能够被氧化发
QM/MM酶催化反应机制研究
酶反应机理研究是化学、生物学中的核心问题之一,长期以来受到广泛关注。不过酶催化反应研究相当复杂,无论实验还是计算模拟都充满挑战,这主要是因为酶反应过程的多尺度特性[1]: 如图1所示,反应底物化学键断裂与生成、蛋白局部氨基酸残基的运动往往在飞秒到皮秒的时间尺度,若要描述溶剂分子例如水的动力学行为至少
合成酶的催化反应机制和过程
合成酶:将伴随三磷酸腺苷(ATP)的分解而催化合成反应的酶称为合成酶。这个过程中,ATP分解为ADP与正磷酸或AMP与焦磷酸。催化反应的机制如下:A + B + ATP ←→ A·B + ADP + Pi 或A + B + ATP ←→ A·B + AMP + PPi比如,氨酰tRNA合成酶就属于此
荧光素酶的分析
萤光素或萤光素酶不是特定的分子,而是对于所有能够产生萤光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的萤光素酶来催化不同的发光反应。最为人所知的发光生物是萤火虫,而其所采用不同的萤光素酶与其他发光生物如萤光菇(发光类脐菇,Omphalotus oleariu'