晶粒大小对金属材料的塑性变形有何影响
晶粒大小对金属材料的塑性变形的影响:1.晶粒越细,变形抗力越大。2.晶粒越细小,金属的塑性就越好。晶粒大小与金属材料的塑性变形的关系:晶粒的大小决定位错塞积群应力场到晶内位错源的距离,而这个距离又影响位错的数目n。晶粒越大,这个距离就越大,位错开动的时间就越长,n也就越大。n越大,应力场就越强,滑移就越容易从一个晶粒转移到另一个晶粒。一定体积,晶粒越细,晶粒数目越多,塑性变形时位向有利的晶粒也越多,变形能较均匀的分散到各个晶粒上。......阅读全文
XRD数据计算晶粒尺寸
Scherrer公式计算晶粒尺寸() Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸) 根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
晶粒尺寸及形状的分析EBSD
晶粒尺寸及形状的分析传统的晶粒尺寸测量依赖于显微组织图象中晶界的观察。自从EBSD出现以来,并非所有晶界都能被常规浸蚀方法显现这一事实已变得很清楚,特别是那些被称为“特殊”的晶界,如孪晶和小角晶界。因为其复杂性,严重孪晶显微组织的晶粒尺寸测量就变得十分困难。由于晶粒主要被定义为均匀结晶学取向的单元,
一文搞定晶粒度分析!
金属晶粒的尺寸(或晶粒度)对其在室温及高温下的机械性质有决定性的影响,晶粒尺寸的细化也被作为钢的热处理中最重要的强化途径之一。因此,在金属性能分析中,晶粒尺寸的估算显得十分重要。那么根据一张金相照片我们能从中得到哪些信息呢?一、晶粒度概述 晶粒度表示晶粒大小的尺度。金属的晶粒大小对金属的许多性
拉曼峰变宽,晶粒是变大还是变小
拉曼峰变宽,代表原子间无序性增大,原子间距增大,与晶粒大小无直接关系。但是非要说的话,应该是变大。
金相显微镜奥氏体晶粒度的概念
奥氏体晶粒大小是用晶粒度来度量的。可用晶粒直径、单位面积中的晶粒数等方法来表示晶粒大小。晶粒度的评定一般采用比较法,即金相试样在放大100倍的显微镜下,与标准的图谱相比。YB27-77将钢的奥氏体晶粒度分为8级,1级zui粗,8级zui细(见P208图)。0级以下为超粗晶粒,8级以上超细晶粒。奥氏体
金相显微镜奥氏体晶粒度的概念
奥氏体晶粒大小是用晶粒度来度量的。可用晶粒直径、单位面积中的晶粒数等方法来表示晶粒大小。晶粒度的评定一般采用比较法,即金相试样在放大100倍的显微镜下,与标准的图谱相比。YB27-77将钢的奥氏体晶粒度分为8级,1级zui粗,8级zui细(见P208图)。0级以下为超粗晶粒,8级以上超细晶粒。奥氏体
通过几何失配应变设计和合成纳米晶粒|Science
与晶界相关的拓扑缺陷(GB缺陷)对纳米晶材料的电学、光学、磁性、力学和化学性质的影响是众所周知的。然而,通过实验来阐明这种影响是困难的,因为晶粒通常表现出大范围的尺寸,形状和随机的相对取向。加州大学伯克利分校A. Paul Alivisatos联合韩国首尔国立大学Taeghwan Hyeon教授
Science|通过几何失配应变设计和合成纳米晶粒
与晶界相关的拓扑缺陷(GB缺陷)对纳米晶材料的电学、光学、磁性、力学和化学性质的影响是众所周知的。然而,通过实验来阐明这种影响是困难的,因为晶粒通常表现出大范围的尺寸,形状和随机的相对取向。加州大学伯克利分校A. Paul Alivisatos联合韩国首尔国立大学Taeghwan Hyeon教授
金相显微镜对于图像晶粒度的预处理
金相分析是对金属进行研究和性能测试的重要手段,在显微镜下观察,绝大多数的金属材料是由许多细小的晶粒组成。传统的材料学理论认为,晶粒细小材料的常规力学性能如拉伸强度、韧性、塑性等均相对较好;晶粒的尺寸还会影响金属的疲劳强度。因此,在金属性能分析中,晶粒尺寸(即晶粒度)的估算显得十分重要。 金属是由许
如何从XRD数据中计算出晶粒的大小
jade 计算的是全谱的粒径大小,如果你的样品做的比较好 测出来的各个峰对应的粒径大小差别不大 如果样品不太好 直接在仪器上计算出来的是最强峰对应的粒径大小 就看你想要哪个数据了
如何用imageJ求TEM图像中的晶粒尺寸分布
用imageJ求TEM图像中的晶粒尺寸分布的方法:用ImageJ打开一幅图,然后选Straight Lines,在bar上量一下,然后在菜单中的Analyze中选Set Scale,在Known Distance 填上bar所代表的长度。然后就可以量了,用Straight Lines量距离,然后按住
张广平团队揭示孪晶辅助纳米晶粒生长机制
近日,中科院金属研究所沈阳材料科学国家(联合)实验室研究员张广平带领团队,通过对纳米尺度金属薄膜疲劳加载下晶粒长大行为的原子尺度研究,揭示了“孪生辅助纳米晶粒长大”的全新物理机制,相关论文在线发表于《自然—通讯》上。 尽管金属中的晶界具有阻碍位错运动、强化材料的重要作用,但当材料的晶粒尺寸
X射线衍射分析对晶粒尺寸和点阵畸变的测定
若多晶材料的 晶粒无畸变、足够大,理论上其粉末衍射花样的谱线应特别锋利,但在实际实验中,这种谱线无法看到。这是因为仪器因素和物理因素等的综合影响,使纯衍射谱线增宽了。纯谱线的形状和宽度由试样的平均晶粒尺寸、尺寸分布以及 晶体点阵中的主要缺陷决定,故对线形作适当分析,原则上可以得到上述影响因素的性
高应变率作用下高导无氧铜晶粒细化
通过Leica EM TIC3X 对样品进行离子束切割,样品EBSD mapping解析率得到明显提升,可达80%-90%以上,并且结果稳定可重复,更好地表征了晶粒的变形,以及大小角晶界的转变。实验样品高应变率作用下高导无氧铜(OFHC)实验目的通过电子背散射衍射技术(EBSD)对在高应变率、高温和
徕卡金相显微镜对于图像晶粒度的预处理
金相分析是对金属进行研究和性能测试的重要手段,在徕卡显微镜下观察,绝大多数的金属材料是由许多细小的晶粒组成。传统的材料学理论认为,晶粒细小材料的常规力学性能如拉伸强度、韧性、塑性等均相对较好;晶粒的尺寸还会影响金属的疲劳强度。因此,在金属性能分析中,晶粒尺寸(即晶粒度)的估算显得十分重要。 金
徕卡金相显微镜对于图像晶粒度的预处理
金相分析是对金属进行研究和性能测试的重要手段,在徕卡显微镜下观察,绝大多数的金属材料是由许多细小的晶粒组成。传统的材料学理论认为,晶粒细小材料的常规力学性能如拉伸强度、韧性、塑性等均相对较好;晶粒的尺寸还会影响金属的疲劳强度。因此,在金属性能分析中,晶粒尺寸(即晶粒度)的估算显得十分重要。金属是由许
晶粒尺寸对冰的“位错蠕变”影响研究获进展
冰川与冰盖中冰的流动被认为是由位错蠕变这一变形机制所控制。位错蠕变是一种应变率与应力的n次方成正比,与晶粒尺寸无关的变形机制。以往研究认为n的经验值为3,而更多的实验室数据发现n的值应为4。n值上的差异可能是不同的实验方式或数据采集方式所致。如图1,在peak stress(小形变量)采集的力学数据
晶粒尺寸对冰的“位错蠕变”影响研究获进展
冰川与冰盖中冰的流动被认为是由位错蠕变这一变形机制所控制。位错蠕变是一种应变率与应力的n次方成正比,与晶粒尺寸无关的变形机制。以往研究认为n的经验值为3,而更多的实验室数据发现n的值应为4。n值上的差异可能是不同的实验方式或数据采集方式所致。如图1,在peak stress(小形变量)采集的力学
纳米金属机械稳定性的反常晶粒尺寸效应发现
纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软化,这种现象在拉伸、压缩、压痕等变形条件下均有大量实验和相关计算模拟结果的报道。 近日,中国科学院金属研究所沈阳材料科学国家研究中心卢柯院士、李秀艳研究员发现,对于塑性变形制备的纳米晶Cu、Ag、Ni样品,准静态拉
金属所发现纳米金属机械稳定性的反常晶粒尺寸效应
纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软化,这种现象在拉伸、压缩、压痕等变形条件下均有大量实验和相关计算模拟结果的报道。机械驱动晶界迁移不仅破坏材料的性能,也给利用塑性变形法制备纳米晶带来巨大困难。尽管目前对于机械驱动晶界迁移的根本机制还存在争议,但相关模
金属所发现纳米金属机械稳定性的反常晶粒尺寸效应
近日,中国科学院金属研究所沈阳材料科学国家研究中心卢柯院士、李秀艳研究员发现纳米金属机械稳定性的反常晶粒尺寸效应。相关成果3月29日于《物理评论快报》(Physical Review Letters)在线发表。 纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软
如何利用金相显微镜对非金属夹杂物或晶粒分析
观察微观结构金属的显微结构决定其强度和耐腐蚀等性能。因此,利用显微镜检测微观结构对冶金学以及多种工业应用有着重要的意义。金相学研究的微观结构特征包括晶粒大小、晶界、相位、相变、体积分数、夹杂物、形态学及带状组织。检测预处理对原料金属进行特殊处理以提高它们的性能,满足特定用途,例如通过添加合金元素来增
晶粒大小对金属材料的塑性变形有何影响
晶粒大小对金属材料的塑性变形的影响:1.晶粒越细,变形抗力越大。2.晶粒越细小,金属的塑性就越好。晶粒大小与金属材料的塑性变形的关系:晶粒的大小决定位错塞积群应力场到晶内位错源的距离,而这个距离又影响位错的数目n。晶粒越大,这个距离就越大,位错开动的时间就越长,n也就越大。n越大,应力场就越强,滑移
探测受压力的材料中的纳米尺寸晶粒的旋转的技术
一项研究发现,随着超精细的材料在高压下变形,纳米尺寸的晶粒出现了旋转,这一发现对于理解结构材料的强度和寿命以及地球内部的矿物形成具有意义。尽管粗晶粒的材料的变形已经得到了广泛的研究,科研人员一直在很大程度上不能克服观测超精细材料纳米尺寸晶粒在压力下变形的实验挑战。 利用金刚石压砧径
实验室光学仪器X射线衍射仪晶粒大小计算
一、关于XRD图谱 1)衍射线宽化的原因 用衍射仪测定衍射峰的宽化包括仪器宽化、试样本身引起的宽化。试样引起的宽化又包括晶块尺寸大小的影响、不均匀应变(微观应变)和堆积层错(在衍射峰的高角一侧引起长的尾巴)。后二个因素是由于试样晶体结构的不完整所造成的。2)半高宽、样品宽化和仪器宽化样品的衍射峰加宽
疲劳加载下纳米尺度金属薄膜晶粒长大机制研究获新进展
在多晶金属中,尽管晶界具有阻碍位错运动、强化材料的重要作用,但当材料的晶粒尺寸减小到纳米尺度时,晶界将变得不稳定。主要表现为:室温下的各种机械加载(单向拉伸、疲劳、压痕加载等)能够诱发明显的晶粒长大和晶界迁移。另一方面,由于晶粒尺寸的减小,面心立方金属中不全位错运动及由此而引发的孪生行为变得更加
徕卡金相显微镜的预处理包括哪些
徕卡金相显微镜是用于观察金属内部组织结构的重要光学仪器,金相分析是对金属进行研究和性能测试的重要手段,在徕卡金相显微镜下观察,绝大多数的金属材料是由许多细小的晶粒组成,晶粒与晶粒之间由晶界分隔开,由于金属中的晶粒个体大小各异,而晶粒个体通常不能决定金属的性能,分析某粒晶粒的大小因而没有特别意义,晶
再结晶的规律
再结晶有如下几条规律:(1)如果金属预先承受的变形程度小于某个临界值时,在退火过程中不发生再结晶。(2) 再结晶后晶粒的尺寸同变形程度和原始晶粒大小有很大关系。原始晶粒越小,越能促进晶核的生成,使再结晶晶粒变细。变形程度越大,则经再结晶后新晶粒尺寸越小,分布也越均匀。(3)再结晶温度随变形程度和退火
晶圆切割设备——晶圆切割机的原理?
芯片切割机是非常精密之设备,其主轴转速约在30,000至 60,000rpm之间,由于晶粒与晶粒之间距很小而且晶粒又相当脆弱,因此精度要求相当高,且必须使用钻石刀刃来进行切割,而且其切割方式系采磨削的方式把晶粒分开。由于系采用磨削的方式进行切割,会产生很多的小粉屑,因此 在切割过程中必须不断地用
xrd半峰宽表示什么物理意义
表征的是晶体的晶粒大小,晶粒越小,宽化越严重,反之晶粒越大,衍射峰越尖锐,有个谢乐公式可以根据半峰宽和d值计算晶粒大小,但这公式只能用于计算粒度小于100nm的晶粒。