脂肪酶的催化机制介绍
脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。脂肪酶的催化部位埋在分子中,表面被相对疏水的氨基酸残基形成的螺旋盖状结构覆盖(又称“盖子”),对三联体催化部位起保护作用。“盖子”中的α-螺旋的双亲性会影响脂肪酶与底物在油-水界面的结合能力,其双亲性减弱将导致脂肪酶活性的降低。“盖子”的外表面相对亲水,而面向内部的内表面则相对疏水。由于脂肪酶与油-水界面的缔合作用,导致“盖子”张开,活性部位暴露,使底物与脂肪酶结合能力增强,底物较容易地进入疏水性的通道而与活性部位结合生成酶-底物复合物。界面活化现象可提高催化部位附近的疏水性,导致α-螺旋再定向,从而暴露出催化部位;界面的存在还可以使酶形成不......阅读全文
脂肪酶的催化机制介绍
脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。脂肪酶的
脂肪酶的催化机制
脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。脂肪酶的
简述脂肪酶催化机制
脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。 来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。
脂肪酶催化机制是怎么样的?
脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。肪酶的催
催化脂肪酶水解的酶
催化脂肪酶水解的酶是蛋白酶大多数的酶是蛋白质,少数是RNA.脂肪酶是蛋白质,催化蛋白质水解的是蛋白酶,能将脂肪酶水解成多肽,但不能水解成氨基酸.因此催化脂肪酶水解的酶是蛋白酶.
有机相脂肪酶催化合成技术的研究
目前在非水介质中获得应用的酶包括氧化还原酶类、转移酶类、水解酶类及异构酶类, 其中脂肪酶是在有机相中催化反应种类最多、应用最广泛的酶类之一。脂肪酶是工业上常用的酶之一,研究表明,在水溶液中它能催化油脂和其它酯类的水解反应,在有机介质中也能催化水解反应的逆反应—酯合成反应和酯交换反应。脂肪酶的这种性质
酶的催化机制
1、酶与底物的结合:酶促化学反应中的反应物称为底物,一个酶分子在一分钟内能引起数百万个底物分子转化为产物,酶在反应过程中并不消耗。但是酶实际上是参与反应的,只是在一个反应完成后,酶分子本身立即恢复原状,又能进行下一次反应。许多实验证明,酶和底物在反应过程中形成络合物。2、酶的作用机制:对于酶的催化作
脂肪酶介绍
CAS编码 9001-62-1英文通用名称 Lipase中文通用名称 脂肪酶性状描述 一般为近白色至淡棕黄色结晶性粉末。由米曲霉制成者可为粉末或脂肪状。基本作用是使三甘油酯水解为甘油和脂肪酸:三甘油酯+H2O→双甘油酯+脂肪酸;→α-单甘酯;→甘油+脂肪酸。最适作用pH值7~8.5,唯植物性者为pH
脂肪酶在催化合成及食品领域的应用
酶有着普通催化剂无可比拟的优越性,已广泛应用于食品、医药、轻纺、洗涤剂及化妆品等工业领域。这些应用大多数是在水溶液中进行的。但许多有价值的产品是水不溶的,同时许多有用的化合物是普通化学方法无法合成的。因此,人们希望找到一种合适的方法来生产这些高价值的重要产品。酶工程的发展有两个途径: 一是改造酶本身
脂肪酶在催化合成及食品领域的应用
酶有着普通催化剂无可比拟的优越性,已广泛应用于食品、医药、轻纺、洗涤剂及化妆品等工业领域。这些应用大多数是在水溶液中进行的。但许多有价值的产品是水不溶的,同时许多有用的化合物是普通化学方法无法合成的。因此,人们希望找到一种合适的方法来生产这些高价值的重要产品。酶工程的发展有两个途径: 一是改造酶本身
脂肪酶在催化合成及食品领域的应用
酶有着普通催化剂无可比拟的优越性,已广泛应用于食品、医药、轻纺、洗涤剂及化妆品等工业领域。这些应用大多数是在水溶液中进行的。但许多有价值的产品是水不溶的,同时许多有用的化合物是普通化学方法无法合成的。因此,人们希望找到一种合适的方法来生产这些高价值的重要产品。酶工程的发展有两个途径: 一是改造酶本身
脂肪酶在催化合成及食品领域的应用
酶有着普通催化剂无可比拟的优越性,已广泛应用于食品、医药、轻纺、洗涤剂及化妆品等工业领域。这些应用大多数是在水溶液中进行的。但许多有价值的产品是水不溶的,同时许多有用的化合物是普通化学方法无法合成的。因此,人们希望找到一种合适的方法来生产这些高价值的重要产品。酶工程的发展有两个途径: 一是改造酶本身
脂肪酶催化在制备光学纯药物中的应用
手性是生命系统的普遍特征,反映了生物物质的不对称性。对于手性药物而言,通常并非两种异构体均具有相同的活性[1]。根据药物立体异构体所表现出的作用差异可分为:①一种异构体有显著的治疗作用,另一种异构体无或有很弱的作用。如常见的解热镇痛药萘普生,其S异构体的活性是R异构体的10~20倍;②一种异构体有治
酶催化机制的定义
中文名称酶催化机制英文名称enzyme catalytic mechanism定 义阐述酶如何与底物相结合,酶催化底物的反应进程,影响酶催化效率的主要因素等一系列问题。主要分为酸碱催化、共价催化、多元催化、金属离子催化、微观可逆原理五种机制。应用学科生物化学与分子生物学(一级学科),酶(二级学科)
小核酶的催化机制
此类核酶催化的都是位点特异性剪切/连接反应,催化机制都涉及到一个被激活的亲核基团对一个磷酸二酯键的进攻,形成五价磷过渡态或半衰期极短的中间物,然后是一个离去的氧。反应的结果是磷酸基团的立体化学发生变化。这类核酶在催化机制上的差别主要是亲核基团和离去基团的不同。四种小核酶都使用内部紧靠剪切点的一个核苷
大核酶的催化机制
大核酶催化的反应有剪切反应、剪接反应和转肽反应。其中最典型的代表是存在于所有细胞中的核糖核酸酶P。与其他核酶不同的是,核糖核酸酶P使用水分子作为亲核基团,并且,核糖核酸酶P既含有RNA,又含有蛋白质。核糖核酸P的催化机制是依赖于2个Mg2+的双金属催化,1个Mg2+激活充当亲核试剂的羟基,使这个羟基
脂肪酶的来源介绍
脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂
脂肪酶的分类介绍
按脂肪酶对底物的特异性可分为三类:脂肪酸特异性、位置特异性和立体特异性。依据脂肪酶的来源不同,脂肪酶还可以分为动物性脂肪酶、植物性脂肪酶和微生物性脂肪酶。不同来源的脂肪酶可以催化同一反应,但反应条件相同时,酶促反应的速率、特异性等则不尽相同。
半胱氨酸蛋白酶催化机制介绍
半胱氨酸蛋白酶催化肽键水解的反应机制的xxx步是通过具有碱性侧链的相邻氨基酸(通常是组氨酸残基)使酶活性位点中的硫醇去质子化。下一步是去质子化半胱氨酸的阴离子硫对底物羰基碳的亲核攻击。在这一步中,底物的一个片段被释放出一个胺端,即蛋白酶中的组氨酸残基恢复到其去质子化形式,并形成将底物的新羧基末端连接
磷酸酶的催化机制
半胱氨酸依赖的磷酸酶通过形成磷酸-半胱氨酸中间体来催化磷酸酯键的断裂,具体过程如下(以磷酸化的酪氨酸去磷酸化过程为例,参见右图)[1]首先,酶活性位点上的自由的半胱氨酸亲核基团进攻磷酸基团中的磷原子并成键;然后,连接磷酸基团与酪氨酸的P-O键接受位置合适的酸性氨基酸(如天冬氨酸)或水分子所提供的质子
酶的结构和催化机制
1、酶的组成与结构:酶的化学本质是蛋白质,蛋白质分子是由氨基酸组成。酶的结构分为四级:一级结构:氨基酸残基严格地按一定顺序线性排列称为蛋白质一级结构,一个蛋白质分子可能由一条肽链构成、也可能由几条肽链构成。二级结构:由于肽链上的一个肽键上的氢原子与另一个肽键上的氧原子有可能能形成氢键,所以,肽链可以
关于脂肪酶的分类介绍
按脂肪酶对底物的特异性可分为三类:脂肪酸特异性、位置特异性和立体特异性。依据脂肪酶的来源不同,脂肪酶还可以分为动物性脂肪酶、植物性脂肪酶和微生物性脂肪酶。不同来源的脂肪酶可以催化同一反应,但反应条件相同时,酶促反应的速率、特异性等则不尽相同 。
概述脂肪酶的性质介绍
脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水
关于脂肪酶的来源介绍
脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶
金属氧化物的催化机制
金属氧化物在催化领域中的地位很重要,它作为主催化剂、助催化剂和载体被广泛使用。就主催化剂而言,金属氧化物催化剂可分为过渡金属氧化物催化剂和主族金属氧化物催化剂,后者主要为固体酸碱催化剂(见酸碱催化作用)。碱金属氧化物、碱土金属氧化物以及氧化铝、氧化硅等主族元素氧化物,具有不同程度的酸碱性,对离子型(
关于胰脂肪酶的基本介绍
胰脂肪酶是水解膳食脂肪的最重要的酶, 等电点为5.0的酸性蛋白分子。胰脂肪酶(Pancrelipases),特别是它的缓释剂型(例如: Creon, Pancreaze, Pertzye, Ultresa, Zenpep) 是猪源性胰淀粉酶的商用混合物(作用于淀粉水解酶),胰脂肪酶和胰凝乳蛋白酶
脂肪酶的活性测定方法介绍
方法:⒈粗酶液的制备用电子天平分别称取粗脂肪酶0.010 g、0.020 g 和0.030 g, 用蒸馏水溶解并定容至100 mL, 配成浓度分别为0.01%、0.02% 和0.03%的粗酶液。⒉实验设计本实验以10 mL色拉油为底物,以酶用量、水解温度、反应时间为因素,通过酸价的测定选定其水解的最
有机相脂肪酶催化合成技术在食品及相关领域的应用
有机相脂肪酶催化在食品、制药、精细化工、有机合成等领域有广阔的应用前景,世界各国都对有机相脂肪酶催化合成活性物质的技术非常重视。有机相脂肪酶催化合成技术在食品及其相关领域的应用研究主要有以下几个方面.1 天然抗氧化剂及健康食品 不饱和脂如EPA、DHA 、花生四烯酸等,因为对人们健康有益,在食品、
有机相脂肪酶催化合成技术在食品及相关领域的应用
有机相脂肪酶催化在食品、制药、精细化工、有机合成等领域有广阔的应用前景,世界各国都对有机相脂肪酶催化合成活性物质的技术非常重视。有机相脂肪酶催化合成技术在食品及其相关领域的应用研究主要有以下几个方面.2. 1 天然抗氧化剂及健康食品不饱和脂如EPA、DHA 、花生四烯酸等,因为对人们健康有益,在食
肝功检查项目介绍脂肪酶
脂肪酶介绍: 脂肪酶主要来源于胰腺,是胰腺分泌的消化酶之一。在急性胰腺炎时血清淀粉酶增高的时间较短。脂肪酶正常值: 28-280U/L。脂肪酶临床意义: 增高:见于急性胰腺炎、慢性胰腺炎、胰腺癌或结石使胰管阻塞时、胆道疾病、胃穿孔、肝硬化、肠梗阻、十二指肠溃疡、乳腺癌、软组织损伤、急性或慢性肾脏疾病