简述磷脂酶C的催化机制

PLC的主要催化反应发生在脂质—水界面的不溶性底物上。活性位点中的残基在所有同种PLC中都是保守的。在动物中,PLC在磷酸二酯键的甘油侧选择性地催化磷脂(磷脂酰肌醇4,5-二磷酸(PIP2))的水解,形成酶与底物弱结合的中间体肌醇1,2-环磷酸二酯和释放二酰基甘油(DAG)。然后将中间体水解成肌醇1,4,5-三磷酸酯(IP3)。因此,两种最终产品是DAG和IP3。 [1] 酸/碱催化需要两个保守的组氨酸残基,并且PIP2水解需要钙离子。人们已经观察到活性位点钙离子与四个酸性残基配位,并且如果任何残基突变,则催化需要更大的钙离子浓度。......阅读全文

简述磷脂酶C的催化机制

  PLC的主要催化反应发生在脂质—水界面的不溶性底物上。活性位点中的残基在所有同种PLC中都是保守的。在动物中,PLC在磷酸二酯键的甘油侧选择性地催化磷脂(磷脂酰肌醇4,5-二磷酸(PIP2))的水解,形成酶与底物弱结合的中间体肌醇1,2-环磷酸二酯和释放二酰基甘油(DAG)。然后将中间体水解成肌

简述脂肪酶催化机制

  脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。  来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。

关于磷脂酶C的基本介绍

  磷脂酰肌醇特异的磷脂酶C(PI-PLC)有3个家族β、γ、δ。各种PI-PLC有类似的催化活性,主要是因为这些酶有两个保守性相当高的氨基酸序列,分别叫X和Y区,它们大约含有150和130个氨基酸残基。此二区在三个家族间的同源性为43%和33%,但各家族内成员间同源性可达79%。当酶蛋白折叠,此二

概述磷脂酶C的生物功能介绍

  PLC将磷脂酰肌醇4,5-二磷酸(PIP2)切割成二酰基甘油(DAG)和肌醇1,4,5-三磷酸(IP3)。因此,PLC对PIP2的消耗具有重要的作用。PIP2在生物中的功能是充当膜锚或变构调节剂。 PIP2还作为合成稀有脂质磷脂酰肌醇3,4,5-三磷酸(PIP3)的底物,其负责多个反应中的信号传

G蛋白和磷脂酶C概述

  G蛋白在TCR/CD3与磷脂酶C(phospholipase C,PLC)的结合过程中起到重要的调节作用。通过G蛋白可使PLC发生活化,从而激活磷脂酰肌酰肌醇代谢途径,引起淋巴细胞活化和增殖。自80年代中期发现G蛋白发现G蛋白及ras等GTP结合蛋白以来,G蛋白与信号转导关系的研究已获得

简述木瓜蛋白酶的催化机制

  木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

简述磷脂酶A2的来源和分布

  人类几乎所有的细胞均含PLA2,主要为两种亚细胞分布,一种为膜结合性PLA2(Ma-PLA2)、另一种为溶酶体和胞液中可溶性PLA2(S-PLA2)。哺乳类细胞外PLA2为正常生理分泌物,胰腺、涎腺、前列腺及精囊腺等均可分泌S-PLA2;激活的单核细胞、巨噬细胞及中性粒细胞分泌释放大量PLA2,

酶催化机制的定义

中文名称酶催化机制英文名称enzyme catalytic mechanism定  义阐述酶如何与底物相结合,酶催化底物的反应进程,影响酶催化效率的主要因素等一系列问题。主要分为酸碱催化、共价催化、多元催化、金属离子催化、微观可逆原理五种机制。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

大核酶的催化机制

大核酶催化的反应有剪切反应、剪接反应和转肽反应。其中最典型的代表是存在于所有细胞中的核糖核酸酶P。与其他核酶不同的是,核糖核酸酶P使用水分子作为亲核基团,并且,核糖核酸酶P既含有RNA,又含有蛋白质。核糖核酸P的催化机制是依赖于2个Mg2+的双金属催化,1个Mg2+激活充当亲核试剂的羟基,使这个羟基

小核酶的催化机制

此类核酶催化的都是位点特异性剪切/连接反应,催化机制都涉及到一个被激活的亲核基团对一个磷酸二酯键的进攻,形成五价磷过渡态或半衰期极短的中间物,然后是一个离去的氧。反应的结果是磷酸基团的立体化学发生变化。这类核酶在催化机制上的差别主要是亲核基团和离去基团的不同。四种小核酶都使用内部紧靠剪切点的一个核苷

多功能有机催化剂催化羰基C–C键活化反应的理论研究

  目前,氮杂环卡宾(NHC)是不对称合成领域应用最广的有机小分子催化剂之一,通常被认为是扮演路易斯碱的角色。最近,科学家们报道了一系列NHC催化的C–H去质子化和C–X(杂原子)键活化反应,其中包括NHC催化羰基C–C键活化反应。在这些NHC催化羰基C–C键活化反应中,科学家们通常认为氮杂环卡宾只

简述抗磷脂酶A2受体抗体的检测意义

  磷脂酶A2受体(PLA2R)属于Ⅰ型跨细胞膜受体,是哺乳动物甘露糖受体家族4个成员之一。PLA2R主要分为两型(M型与N型),已经确认M型PLA2R是自身抗体的主要靶抗原。PLA2R与IgG4共定位于肾小球的免疫复合物沉积中,因此PLA2R是导致特发性膜性肾病的主要抗原,所以,检测循环血液中的抗

研究揭示真核生物磷脂酶D的结构与机制

  10月16日,Cell research 在线发表了中国科学院分子植物科学卓越创新中心张鹏研究组题为Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospho

脂肪酶的催化机制

脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。脂肪酶的

磷酸酶的催化机制

半胱氨酸依赖的磷酸酶通过形成磷酸-半胱氨酸中间体来催化磷酸酯键的断裂,具体过程如下(以磷酸化的酪氨酸去磷酸化过程为例,参见右图)[1]首先,酶活性位点上的自由的半胱氨酸亲核基团进攻磷酸基团中的磷原子并成键;然后,连接磷酸基团与酪氨酸的P-O键接受位置合适的酸性氨基酸(如天冬氨酸)或水分子所提供的质子

金属氧化物的催化机制

金属氧化物在催化领域中的地位很重要,它作为主催化剂、助催化剂和载体被广泛使用。就主催化剂而言,金属氧化物催化剂可分为过渡金属氧化物催化剂和主族金属氧化物催化剂,后者主要为固体酸碱催化剂(见酸碱催化作用)。碱金属氧化物、碱土金属氧化物以及氧化铝、氧化硅等主族元素氧化物,具有不同程度的酸碱性,对离子型(

脂肪酶的催化机制介绍

脂肪酶具有油-水界面的亲和力,能在油-水界面上高速率的催化水解不溶于水的脂类物质;脂肪酶作用在体系的亲水-疏水界面层,这也是区别于酯酶的一个特征。来源不同的脂肪酶,在氨基酸序列上可能存在较大差异,但其三级结构却非常相似。脂肪酶的活性部位残基由丝氨酸、天冬氨酸、组氨酸组成,属于丝氨酸蛋白酶类。脂肪酶的

简述丝裂霉素C的作用

  丝裂霉素C为细胞周期非特异性药物,其抗肿瘤谱较广,作用迅速,但治疗指数不高,毒性较大。临床适用于消化道癌,如胃癌、肠癌、肝癌及胰腺癌等,疗效较好。对肺癌、乳腺癌、宫颈癌及绒毛膜上皮癌等也有效。还可用于恶性淋巴瘤、癌性胸腹腔积液。

磷脂酶的基本结构

其中主要包括磷脂酶A1、A2、B1、B2、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物。这一过程也是甘油磷脂的改造加工过程。

C3途径的作用机制

而后3-磷酸甘油酸消耗1分子ATP,在甘油酸激酶的作用下形成1,3-二磷酸甘油酸。又消耗1分子NADPH,形成3-磷酸甘油醛。之后在磷酸丙糖酶的作用下,形成3-磷酸丙糖。继续消耗1分子ATP,重新形成RuBP。后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经

C3途径的作用机制

而后3-磷酸甘油酸消耗1分子ATP,在甘油酸激酶的作用下形成1,3-二磷酸甘油酸。又消耗1分子NADPH,形成3-磷酸甘油醛。之后在磷酸丙糖酶的作用下,形成3-磷酸丙糖。继续消耗1分子ATP,重新形成RuBP。后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经

无花果蛋白酶的催化机制

无花果蛋白酶与底物反应 3 个步骤:快速形成松散的酶底物复合物;酶活性中心的-SH 基被底物的羰基酰化;酰化酶的分解,生成酶与产物。

​木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

苏氨酸蛋白酶的催化机制

苏氨酸蛋白酶使用其N端苏氨酸的仲醇作为亲核试剂进行催化。苏氨酸必须是N末端,因为相同残基的末端胺通过极化有序水而起到一般碱的作用,从而使醇去质子化以增加其作为亲核试剂的反应性。催化分两步进行:首先亲核试剂攻击底物形成共价酰基酶中间体,释放xxx个产物。其次,中间体被水水解以再生游离酶并释放第二产物。

丝氨酸蛋白酶的催化机制

丝氨酸蛋白酶催化机制的主要参与者是催化三联体。三联体位于酶的活性位点,在那里发生催化作用,并保存在丝氨酸蛋白酶的所有超家族中。三联体是由三个氨基酸组成的协调结构:His57、Ser195(因此得名“丝氨酸蛋白酶”)和Asp102.这三种关键氨基酸均在蛋白酶的切割能力中发挥重要作用。虽然三联体的氨基酸

卵磷脂酶试验

  卵磷脂酶试验是检验技师考试的内容,医学教育网搜集整理相关内容供大家参考。  (1)原理:有的细菌产生卵磷脂酶(α-毒素),在钙离子存在时,此酶可迅速分解卵磷脂,生成浑浊沉淀状的甘油酯和水溶性磷酸胆碱。  (2)培养基:l%卵黄琼脂平板。  (3)方法:将被检菌划线接种或点种于卵黄琼脂平板上,于3

卵磷脂酶试验

 (1)原理:有的细菌产生卵磷脂酶(α-毒素),经钙离子作用,能迅速分解卵磷脂,形成混浊沉淀状的甘油酯和水溶性磷酸胆碱。   (2)培养基:1%卵黄琼脂平板。   (3)方法:取待检菌划线接种或点种在卵黄琼脂平板上,置35℃孵育3~6h,观察结果。   (4)结果:3h后在菌落周围形成乳白色

简述丝裂霉素C的副作用

  1、骨髓抑制,主要是白细胞和血小板下降。  2、胃肠道反应,食欲不振、恶心及呕吐等,一般较轻。  3、注射局部可有静脉炎,如漏出血管外,可引起组织坏死破溃。  4、少数病人可出现肝、肾功能障碍。  5、有时可有口腔炎、乏力及脱发等。