简述乳糖操纵子机制

抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因转录也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 [2] 诱导作用:在乳糖存在情况下,乳糖代谢产生异构乳糖(alloLactose),异构乳糖能和调节基因产生的阻遏蛋白结合,使阻遏蛋白改变构象,不能再和操纵基因结合,失去阻遏作用,结果RNA聚合酶便与启动基因结合,并使结构基因活化,转录出mRNA,翻译出酶蛋白。 [2] 负反馈:细胞质中有了β—半乳糖苷酶后,便催化分解乳糖为半乳糖和葡萄糖。乳糖被分解后,又造成了阻遏蛋白与操纵基因结合,使结构基因关闭。......阅读全文

简述乳糖操纵子机制

  抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因转录也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 [2]  诱导作用:在乳糖存在情况下,乳糖代谢产生异构乳糖(alloLac

乳糖操纵子的作用机制

抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因转录也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 [2] 诱导作用:在乳糖存在情况下,乳糖代谢产生异构乳糖(alloLactos

简述乳糖操纵子的应用

  1977年10月,H. W. Boyer博士的研究小组,将化学合成的人脑激素,即生长激素释放抑制因子(somatostatin)的基因,连接在乳糖操纵子上,并导入大肠杆菌细胞。这是第一个以DNA重组技术完成的基因工程。人类首次成功地将一种高等真核生物的基因移入原核生物的细胞内,并能转录和转译,产

以乳糖操纵子为例原核生物基因表达调控的原理

原核生物的基因表达调控原核生物的基因表达调控虽然比真核生物简单,然而也存在着复杂的调控系统,如在转录调控种就存在着许多问题:如何在复杂的基因组内确定正确的转录起始点?如何将DNA的核苷酸按着遗传密码的程序转录到新生的RNA链中?如何保证合成一条完整的RNA链?如何确定转录的终止?上述问题决定于DNA

乳糖操纵子的定义

乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。

乳糖操纵子的应用

1977年10月,H. W. Boyer博士的研究小组,将化学合成的人脑激素,即生长激素释放抑制因子(somatostatin)的基因,连接在乳糖操纵子上,并导入大肠杆菌细胞。这是第一个以DNA重组技术完成的基因工程。人类首次成功地将一种高等真核生物的基因移入原核生物的细胞内,并能转录和转译,产生出

简述Caspase活化机制

  Caspase的活化是有顺序的多步水解的过程,Caspase分子各异,但是它们活化的过程相似。首先在caspase前体的N-端前肽和大亚基之间的特定位点被水解去除N-端前肽,然后再在大小亚基之间切割释放大小亚基,由大亚基和小亚基组成异源二聚体,再由两个二聚体形成有活性的四聚体。去除N-端前肽是C

乳糖操纵子的功能特点

乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。1961年雅各布(F.Jacob)和莫诺德(J.Monod)根据对该系统的研究而提出了著名的操纵子学说。在大肠杆菌的乳糖系统操纵子中,β-半乳糖苷酶,半乳糖苷渗透酶,半乳糖苷转酰酶的结

概述乳糖操纵子的发展

  阻遏蛋白的活性受到小分子诱导的控制  细菌对环境的改变必需作出迅速的反应。营养供给随时都可能发生变化,反复反常。要能得以幸存必需具有可以变换不同代谢底物的能力。单细胞真核生物也同样生活在不断变化环境中;而更为复杂的多细胞生物都具有一套恒定的代谢途径,而无需对外部环境作出反应。  在细菌中是很需要

半乳糖操纵子的定义

半乳糖也是E.coli的一种碳源,它的分解要涉及三种酶的催化:半乳糖激酶(galactokinase,K),半乳糖转移酶(galactose transferase,T)和半乳糖表面异构酶(galactose epimerase ,E,)。

乳糖操纵子的结构特点

细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。乳

关于乳糖操纵子的介绍

  模式生物大肠杆菌的乳糖操纵子是首先被发现的操纵子,亦提供了操纵子功能的典型例子。它包含了三个相连的结构基因、启动子、终结子及操纵基因。乳糖操纵子是由多种因素,包括葡萄糖及乳糖的存在来调控的。

关于乳糖操纵子的简介

  乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。1961年雅各布(F.Jacob)和莫诺德(J.Monod)根据对该系统的研究而提出了著名的操纵子学说。在大肠杆菌的乳糖系统操纵子中,β-半乳糖苷酶,半乳糖苷渗透酶,半乳糖苷转酰酶

概述乳糖操纵子的结构

  细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中

简述位置效应的机制

  从有关花斑位置效应的事例中可以看到如果基因位置转移到异染色质附近就会出现花斑效应,如果恢复原来位置则花斑效应便随着丧失。这说明基因由于染色体畸变而被转移到异染色质附近时,虽然它在功能上发生了改变,但基因本身并未发生改变。异染色质大部分是由较短的重复顺序所组成,它的螺旋化和固缩程度远远大于常染色质

简述氯胺酮的作用机制

  K粉的主体成分氯胺酮会产生一种独特的麻醉状态,表现为木僵、镇静、遗忘和显著镇痛。此种状态被认为是边缘系统与丘脑-新皮质系统分离的结果,早年曾称其为“分离麻醉(Dissociativeanesthe-sia)”。脑电图研究结果表明,氯胺酮会抑制丘脑-皮层系统,选择性地阻断痛觉冲动向丘脑和皮层的传导

简述RNA编辑的机制

  编辑一般发生在mRNA的3’端而不在5’端,1988年Kenneth等首次报道了编辑在3'端的现象。他们合成了2种编辑引物和2种未编辑引物。完全编辑的成熟RNA仅能同编辑引物杂交,用PCR检测到了杂交带,它不能杂交到未编辑mRNA上。相反,未编辑RNA仅能同未编辑引物反应。如果编辑是从转

半乳糖操纵子的结构特点

(1)有2个启动子:P1和P2,当有活性的CAP存在时P1启动,其-10顺序位于-12~-6,称为-10S1,转录的起始点为+1。当CAP缺乏时P2启动子启动,从-5开始转录,其-10顺序位于-17~-11,称做-10S2;(2)gal操纵子无-35顺序;(3)具有2个操纵基因OE和OI ,OE在上

半乳糖操纵子的功能介绍

半乳糖也是E.coli的一种碳源,它的分解要涉及三种酶的催化:半乳糖激酶(galactokinase,K),半乳糖转移酶(galactose transferase,T)和半乳糖表面异构酶(galactose epimerase ,E,)。

半乳糖操纵子的结构特点

(1)有2个启动子:P1和P2,当有活性的CAP存在时P1启动,其-10顺序位于-12~-6,称为-10S1,转录的起始点为+1。当CAP缺乏时P2启动子启动,从-5开始转录,其-10顺序位于-17~-11,称做-10S2;(2)gal操纵子无-35顺序;(3)具有2个操纵基因OE和OI ,OE在上

简述肠结核的发病机制

  90%以上肠结核是由人型结核分枝杆菌引起的,少数可由牛型结核分枝杆菌引起。结核分枝杆菌引起肠道感染的途径主要有肠源性、血源性和直接蔓延。  1.肠源性  结核分枝杆菌主要经口传染而侵入肠道,患者常为开放性肺结核,由于吞咽了自身含有结核分枝杆菌的痰液而致病。或者经常与开放性肺结核病人一同进餐,缺乏

简述显性感染的机制

  当机体免疫力较弱,或入侵的病原菌毒力较强,数量较多时,则病原微生物可在机体内生长繁殖,产生毒性物质,经过一定时间相互作用(潜伏期),如果病原微生物暂时取得了优势地位,而机体又不能维护其内部环境的的相对稳定性时,机体组织细胞就会受到一定程度的损害,表现出明显的临床症状,称为显性感染,即一般所谓传染

简述肛管损伤的发病机制

  伤后肛门部疼痛,出血或肛门失禁,狭窄致排便困难、便细。伤后早期检查可见肛门部及其周围组织裂伤、出血。肛管括约肌横断者,常有粪便流出、污染。时间较久者局部有严重感染,可见臀大肌深部蜂窝组织炎。  凡有肛门部外伤史,并出现肛门疼痛、出血、肛门失禁、排便困难者应疑有肛管损伤。肛门指检发现指套染血、括约

简述双重输尿管的发病机制

  根据重复输尿管的位置关系,可分为3种类型:  1.不完全性双重输尿管  上、下肾的输尿管呈“Y”形融合成一根输尿管,并开口于膀胱内正常位置,其交汇点可在输尿管的任何部位。  2.完全性双重输尿管  两根输尿管完全分开,分别引流上、下肾的尿液,并同时开口于膀胱三角区。一般下肾的输尿管开口于膀胱内正

简述双叶肺炎的病因机制

  95%以上的大叶性肺炎由肺炎链球菌引起,尤以Ⅲ型者毒力最强。此外,肺炎杆菌、金黄色葡萄球菌、溶血性链球菌、流感嗜血杆菌也可引起。受寒、疲劳、醉酒、感冒、麻醉、糖尿病、肝、肾疾病等均可为肺炎的诱因。此时,呼吸道的防御功能被削弱,机体抵抗力降低,易发生细菌感染。

简述腹泻病的发病机制

  1、腹泻病的介绍  腹泻病(Diarrhea Disease)是一组多病原多因素引起的疾病,以大便次数增多和大便性状改变为特点的一组临床综合症,严重可引起脱水和电解质紊乱。  2、腹泻病发病机制  渗透性--肠腔内存在大量不能被吸收的具有渗透活性的物质。分泌性---肠腔内电解质分泌过多,渗出性-

简述跟腱挛缩的病理机制

  结缔组织是将机体所有细胞、组织和器官连成整体的特殊组织。由于它具有一定硬度和韧性,在机体内不仅起着黏合、连接、支撑和负重作用,还具有防御、保护、营养和修复等多方面的功能。  结缔组织中最主要的组成成分是胶原纤维。胶原纤维多呈束状,可有分枝,相互之间可交织在一起,其特性是韧性大、抗拉力强,但缺乏弹

简述加德纳杆菌的致病机制

  对于Bv的发病机制至今仍不清楚。考虑有以下因素:阴道内一些细菌或噬菌体裂解对产过氧化氢的乳酸杆菌导致过氧化氢产生减少,从面引起普雷沃菌属(Pevella)动弯杆菌属(Mobiluneus)过度增生产生丁二酸,进而抑制白细胞的趋化作用:普雷沃菌属降解氨基酸产生胺,Gv利用胺来产生氨基酸,这种开高胺

简述DNA重组的机制内容

  遗传重组由许多不同的酶催化。重组酶是DNA重组过程中催化链转移步骤的关键酶。 RecA是在大肠杆菌中发现的主要重组酶,负责修复DNA双链断裂(DSBs)。在酵母和其它真核生物中,修复DSB需要两种重组酶。 RAD51蛋白是有丝分裂和减数分裂重组所必需的,而DNA修复蛋白DMC1对减数分裂重组具有

简述强心苷的作用机制

  地高辛等强心苷的正性肌力作用的机制主要是抑制细胞膜结合的Na,K-ATP酶,致使心肌细胞内游离Ca2+ 浓度升高。 [1] 目前认为Na,K-ATP酶是强心苷的特异性受体,它由α及β亚单位组成的一个二聚体。α亚单位是催化亚单位,贯穿膜内外两侧,分子量112000。β亚单位为一糖蛋白,分子量约35