合成法制备亮氨酸
亮氨酸化学合成法有A.Strecker, n一卤代酸氨解、相转移催化等几种方法。虽然化学合成法原理简单,价格低廉,但操作复杂,反应条件苛刻,副产物多,产率不高,并且有的方法涉及到有毒物质。化学合成法得到亮氨酸是消旋的DL一亮氨酸,为了得到L一亮氨酸,必须进行光学异构体的拆分。因此化学合成法很少用于L一亮氨酸的生产。......阅读全文
合成法制备亮氨酸
亮氨酸化学合成法有A.Strecker, n一卤代酸氨解、相转移催化等几种方法。虽然化学合成法原理简单,价格低廉,但操作复杂,反应条件苛刻,副产物多,产率不高,并且有的方法涉及到有毒物质。化学合成法得到亮氨酸是消旋的DL一亮氨酸,为了得到L一亮氨酸,必须进行光学异构体的拆分。因此化学合成法很少用于L
酶催化法制备亮氨酸
酶催化法生产L一亮氨酸通常是利用转氨酶转氨给a一酮基异己酸生成L一亮氨酸和组氨酸将相关的酶和NADH共价结合在膜上,让底物缓缓地经过膜而进行酶催化反应生成L一亮氨酸。如1981年,Wichmann er al.建立了一种用超滤膜制成的膜反应器,膜上共价结合了亮氨酸转氨酶、甲酸转氨酶、和NADH,当底
亮氨酸的制备方法介绍
氨基酸的制造是从1820年水解蛋白质开始的。1908年日本人Ikeda发现谷氨酸钠是鲜味的强化剂,开始了工业化生产氨基酸的历史。1957年日本开始运用微生物进行谷氨酸发酵生产,从此揭开了微生物发酵方法生产氨基酸的历史新篇章。20世纪六十年代左右,关于L一亮氨酸生物合成以及其代谢调节机制相继阐明。这为
亮氨酸的制备方法介绍
氨基酸的制造是从1820年水解蛋白质开始的。1908年日本人Ikeda发现谷氨酸钠是鲜味的强化剂,开始了工业化生产氨基酸的历史。1957年日本开始运用微生物进行谷氨酸发酵生产,从此揭开了微生物发酵方法生产氨基酸的历史新篇章。20世纪六十年代左右,关于L一亮氨酸生物合成以及其代谢调节机制相继阐明。这为
微生物发酵法制备亮氨酸
发酵法1987年德国学者Groegere采用添加前体物。一酮基异己酸生产L一亮氨酸,当培养基中添加前体物。一酮基异己酸的浓度为20g/L,谷氨酸棒杆菌ATCC 13032发酵57h,可生成16g/L L一亮氨酸,质量转化率91-96%;而采用分批流加培养法,可流加a一酮基异己酸32 g/L,发酵23
生产亮氨酸的化学合成法简介
亮氨酸化学合成法有A.Strecker, n一卤代酸氨解、相转移催化等几种方法。虽然化学合成法原理简单,价格低廉,但操作复杂,反应条件苛刻,副产物多,产率不高,并且有的方法涉及到有毒物质。化学合成法得到亮氨酸是消旋的DL一亮氨酸,为了得到L一亮氨酸,必须进行光学异构体的拆分。因此化学合成法很少用
高异亮氨酸的生物合成途径介绍
赖氨酸的生物合成途径是1950年以后逐渐被阐明的。赖氨酸的生物合成途径与其他氨基酸不同,依微生物的种类而异。细菌的赖氨酸生物合成途径需要经过二氨基庚二酸(DAP)合成赖氨酸。酵母、霉菌的赖氨酸生物合成途径,需要经过α-氨基己二酸合成赖氨酸。同样是二氨基庚二酸合成赖氨酸途径,不同的细菌,赖氨酸生物合成
水解法制备亮氨酸的方法介绍
氨基酸是蛋白质的组成单位,在酸性条件下,将L一亮氨酸含量较高的蛋白质水解,得到各种氨基酸的混合物,经分离、纯化、精致等工序获得L一亮氨酸产品。我国大部分厂家采用蛋白质水解法生产L一亮氨酸和L-胱氨酸。蛋白质水解法生产L一亮氨酸的优点是生产设备简单,技术要求不高,并且L一亮氨酸在蛋白质中的含量较高。但
酶催化法生产亮氨酸的方法介绍
酶催化法生产L一亮氨酸通常是利用转氨酶转氨给a一酮基异己酸生成L一亮氨酸和组氨酸将相关的酶和NADH共价结合在膜上,让底物缓缓地经过膜而进行酶催化反应生成L一亮氨酸。如1981年,Wichmann er al.建立了一种用超滤膜制成的膜反应器,膜上共价结合了亮氨酸转氨酶、甲酸转氨酶、和NADH,
溴酚蓝的合成制备方法
1.将苯酚红溶于冰乙酸,搅拌下加入溴溶于冰乙酸的溶液,搅拌几分钟后倾入60℃热水中,冷却至室温,放置过夜。过滤,依次用冰乙酸、苯洗涤滤饼,晾干,得溴酚蓝。2.将酚红溶于冰乙酸中,加热至沸,滴加溴溶于冰乙酸中的溶液,黄色固体析出时,过滤,用乙酸洗去游离溴,置于空气中干燥后即得粗品。用冰乙酸或丙酮与冰乙
关于亮氨酸的添加前体物发酵法介绍
1987年德国学者Groegere采用添加前体物。一酮基异己酸生产L一亮氨酸,当培养基中添加前体物。一酮基异己酸的浓度为20g/L,谷氨酸棒杆菌ATCC 13032发酵57h,可生成16g/L L一亮氨酸,质量转化率91-96%;而采用分批流加培养法,可流加a一酮基异己酸32 g/L,发酵23h
原位合成芯片的制备方法介绍
方法一Affymetrix公司将光平版印刷技术(photolithographicapproach)运用到DNA合成化学中,利用固相化学、光敏保护基及光刻技术得到位置确定、高度多样性的化合物集合。该法利用光敏保护基来保护碱基单位的5’羟基。第一步利用光照射使固体表面上的羟基脱保护,然后固体表面与光敏
介孔材料制备上,水热合成法和溶胶凝胶法的优缺点
优点溶胶-凝胶法与其它方法相比具有许多独特的优点: (1)由于溶胶-凝胶法中所用的原料首先被分散到溶剂中而形成低粘度的溶液,因此,就可以在很短的时间内获得分子水平的均匀性,在形成凝胶时,反应物之间很可能是在分子水平上被均匀地混合。 (2)由于经过溶液反应步骤,那么就很容易均匀定量地掺入一些微量元素,
Bucherer法合成甘氨酸
将三聚甲醛加入碳酸铵和氰化钠的水溶液中,室温下搅拌溶解后于80-85℃下反应3h。得到乙内酰脲水溶液。然后直接加入30%NaOH水溶液,于170℃下水解3h。最后以阳离子交换树脂处理,得到收率为83.2%的甘氨酸。
快速制备酵母DNA法
实验概要本实验制备了酵母转化质粒,快速从转化酵母菌中分离了用于Southern分析的基因组DNA。主要试剂2% Triton X-100,1%SDS,100mmol/L NaCl,10mmol/L Tris-HCl(pH8),1mmol/L Na2EDTA,苯酚:氯仿:已戊醇(25:24:1),YP
果胶的制备微波法
微波是一种频率为300MHz~300GHz的电磁波,其对应的波长为1mm~1m,比可见光的波长长,属高频波段的电磁波。它具有电磁波的反射、透射、干涉、衍射、偏振以及伴随着电磁波的能量传输等波动特性,还具有高频特性、热特性及非热特性。它主要用于通讯、广播电视等领域。 20世纪60年代开始,人们逐渐将微
原位合成的基因芯片制备技术
生物芯片制备中材料的固定方式主要包括原位合成法和点样法两种,点样法又分为接触式点样法和非接触式点样法。原位合成法主要用于基因芯片的制备,点样法可用于基因芯片和蛋白质芯片的制备。细胞芯片主要是通过细胞本身的贴壁生长来完成固定。组织芯片通过一些黏性溶剂(如石蜡)使组织切片固定在载体上。某些微流体芯片不需
氨基酸的制备合成方法
组成蛋白质的大部分氨基酸是以埃姆登-迈耶霍夫(Embden-Meyerhof)途径与柠檬酸循环的中间物为碳链骨架生物合成的。例外的是芳香族氨基酸、组氨酸,前者的生物合成与磷酸戊糖的中间物赤藓糖-4-磷酸有关,后者是由ATP与磷酸核糖焦磷酸合成的。微生物和植物能在体内合成所有的氨基酸,动物有一部分氨基
氨基酸合成的制备方法介绍
组成蛋白质的大部分氨基酸是以埃姆登-迈耶霍夫(Embden-Meyerhof)途径与柠檬酸循环的中间物为碳链骨架生物合成的。例外的是芳香族氨基酸、组氨酸,前者的生物合成与磷酸戊糖的中间物赤藓糖-4-磷酸有关,后者是由ATP与磷酸核糖焦磷酸合成的。微生物和植物能在体内合成所有的氨基酸,动物有一部分
关于合成树脂的制备方法介绍
合成树脂为高分子化合物,是由低分子原料――单体(如乙烯、丙烯、氯乙烯等)通过聚合反应结合成大分子而生产的。工业上常用的聚合方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合、淤浆聚合、气相聚合等。生产合成树脂的原料来源丰富,早期以煤焦油产品和电石碳化钙为主,现多以石油和天然气的产品为主,如乙烯、丙烯、
水热法合成水晶原理
目前市场上出现的合成水晶主要是用水热法合成的,而这种方法的基本原理是在一个密封的高压釜中注入大量"无水硅酸",加入二氧化硅以及染色剂。 合成水晶是人工模仿天然水晶的化学成分,以及形成时的温压条件,在实验室中合成的。合成水晶与天然水晶的基本性质相同,所不同的只是结晶的时间和地点。由于合成水晶在其
质粒DNA的小量制备实验——煮沸小量制备法
实验方法原理当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。推荐采用本方案从1-24个菌落培养液中制备少量的质粒DNA,尽管该方案十分快捷,但制备的DNA的
亮氨酸的性状
白色结晶或结晶性粉末;无臭,味微苦。在甲酸中易溶,在水中略溶,在乙醇或乙醚中极微溶解。
制备色谱法的介绍
可分为工业用大规模制备纯物质的生产制备色谱和实验室分离几毫克至几克样品,以便鉴定色谱图中未知峰的小型制备色谱。实验室制备色谱除了用柱色谱外还有制备薄层色谱。由于样品处理量大,制备色谱要求色谱柱具有一定的容量和效率,以分离收集纯组分。同时也要考虑分离速度,而进样和检测器这两部分与分析色谱大致相似。制备
抗血清制备法生化检验
抗血清制备法:抗血清指含有抗体的血清。传统的抗血清制备方法是将某种抗原通过多次注入动物,数十天后或数月后,采集动物血,立即分离出血清。此抗血清在保存或应用前必须作效价和特异性鉴定及纯化。(一)免疫动物的选择免疫动物的选择基本要求:1.抗原与免疫动物的种属差异越远越好。2.动物必须适龄、健壮、无感染、
散剂的制备实验——示例法
散剂系指药物或与适宜辅料经粉碎、均匀混合而制成的干燥粉末状制剂,供内服或局部用。内服散剂一般溶于或分散于水或其他液体中服用,亦可直接用水送服。局部用散剂可供皮肤、口腔、咽喉、腔道等处应用;专供治疗、预防和润滑皮肤为目的的散剂亦可称撒布剂或撒粉。实验材料碳酸氢钠氧化镁试剂、试剂盒硫酸氢钠仪器、耗材研钵
小量制备质粒DNA(强碱法)
实验概要本文介绍了强碱法小量制备质粒DNA的原理及操作流程。有助于了解基因工程操作中运载基因的载体,掌握最常用的提取质粒DNA的方法。实验原理碱变性抽提质粒DNA是基于染色体DNA的变性与复性的差异而达到分离的目的。利用溶菌酶、强碱(NaOH)及表面活性剂(SDS)使细胞破壁、膜,释放出胞内染色体D
固相合成法制备抗原肽环肽
1.1 仪器与试剂多肽合成仪(CS536,美国CSBio公司),半制备型高效液相色谱仪(Waters Delta Prep4000,美国Waters公司),分析型高效液相色谱仪(Agilent 1100,美国Agilent公司),冷冻干燥机(Christ Alpha,德国Christ公司)
原位合成应用于生物芯片制备
在生物基因工程领域,生物芯片制备中材料的固定方式主要包括原位合成法和点样法两种,点样法又分为接触式点样法和非接触式点样法。原位合成法主要用于基因芯片的制备,点样法可用于基因芯片和蛋白质芯片的制备。细胞芯片主要是通过细胞本身的贴壁生长来完成固定。组织芯片通过一些黏性溶剂(如石蜡)使组织切片固定在载体上
化学合成法制备阿魏酸
阿魏酸的化学合成法是以香兰素为基本原料,主要应用的有机反应有Wittig-Horner反应和Kneoevenagel反应。1、Wittig-Horner反应合成阿魏酸亚磷酸三乙酯乙酸盐和乙酰香兰素在强碱体系中发生Wittig-Horner反应,再用浓盐酸酸化得到阿魏酸。该法需要预先保护酚羟基,否则由