简述芋螺毒素合成的新技术

随着对芋螺毒素研究的深入和多肽合成技术的进步,芋螺毒素的合成方法也不断改进。Ale-wood小组将硒代半胱氨酸引入,合成了3个α-芋螺毒素ImI的类似物。具体操作是用硒代半胱氨酸代替了其中的1对或者2对半胱氨酸,形成二硒键替代了原有的二硫键,显著提高了芋螺毒素的氧化折叠效率,NMR和CD谱都表明类似物和天然的ImI在结构上十分相似,并且保持了原有的生物活性。可采用硒代半胱氨酸代替半胱氨酸合成了μ-芋螺毒素SIIIA类似物,并且使用同位素标记了1对半胱氨酸,在提高了合成效率的同时确定了二硫键的连接。 有研究人员在利用微波合成法合成了α-芋螺毒素MII的过程中,比较了使用微波合成法和经典的固相合成法。结果表明使用微波合成的产率更高,从77%~89%提高到75%-93%。更重要的是使用微波加热缩短了每个反应周期的时间,由1-2h减少到12-15 min。如果把微波用于环状肽α-芋螺毒素IMI合成,合成效率也有所提高。此外,......阅读全文

关于A超家族芋螺毒素的应用介绍

  A-超家族芋螺毒素能选择性阻断nAChRs的某种亚型,使它们可作为鉴定nAChRs及其亚基的有效工具。如:α-CTxMI能特异性结合肌肉型nAChRs的α1δ亚基,而α-CTxMII选择性作用于神经型nAChRs的α3β2亚基。在药理学方面,A-超家族还作为镇疼药物已进入临床研究,Livett等

关于A超家族芋螺毒素的分析介绍

  A-超家族芋螺毒素的cDNA序列分析发现,它们的信号肽序列具有很高的同源性,而前体肽序列在同一家族中也具有很高的保守性,成熟肽区则显示超变异性,但是各家族的二硫键骨架结构仍然相对保守。但就整个A-超家族芋螺毒素来说,它不像其他超家族芋螺毒素具有完全相同的二硫键骨架结构,在其三个家族中,α-芋螺毒

关于A超家族芋螺毒素的分布介绍

  α-芋螺毒素是A-超家族芋螺毒素中分布最广、丰度最高的家族,它们是一些12~30AA的小肽,通常含两个二硫键,有20种α-芋螺毒素的一级结构得到了确证,分别来自不同的芋螺种。α-芋螺毒素是神经或肌肉乙酰胆碱受体的抑制剂。而一种芋螺中同时可能含有6种以上的α-芋螺毒素,其靶位分子均为nAChR受体

关于芋螺毒素的抗药物成瘾作用介绍

  由于NMDA受体参与精神活性物质奖赏效应的形成,因此conantokins对于精神活性物质成瘾具有潜在干预作用。魏娟娟等观察到Con-G使吗啡依赖小鼠平均跳跃次数减少89%,并呈剂量依赖性,相同剂量Con-G[S16Y]可完全抑制吗啡依赖小鼠戒断跳跃;而Con-R[1-17]仅使吗啡依赖小鼠平均

关于芋螺毒素的其他方面作用的介绍

  Conantokins对帕金森病也显示出一定治疗作用。给帕金森病大鼠注射Con-G进行干预,发现它能够呈剂量依赖性地加强左旋多巴诱导的大鼠旋转。另一项研究表明,Con-G可以增强甲基苯丙胺诱导大鼠的行为学效应。其原因可能是甲基苯丙胺可以促进多巴胺释放,Con-G给药间接增强了多巴胺激动剂的药效。

关于芋螺毒活性肽的简介

  20世纪80年代初,美国犹它大学的研究人员直接将芋螺毒组分注射到哺乳动物中枢神经系统,而抛开当时该实验室乃至大多数实验室已长期惯用的所谓的标准方法即腹腔内膜注射法(i.p.),结果显示,用颅腔注射法引发了大量的小白鼠不同的行为症状反应,这揭示了芋螺毒的药理多样性;而用i.p法,只有很小比例的小白

海螺毒素多肽的特性及其应用

海螺产生的毒素(conotoxins)按结构不同可作用于钠或钾离子通道上的受体,其独特的性能使它们成为各研究领域里有价值的工具。                      地理锥芋螺                                僧枹芋螺                       

概述超家族毒素的基本内容

  根据芋螺毒素基因及其前体蛋白信号肽的保守性,可将芋螺毒素分为A、O、T、M、P、I等多个超家族。α、αA、κA属于A-超家族,ω、δ、κ、μO属于O-超家族,μ、ψ、ΚM属于M-超家族。O-超家族芋螺毒素(半胱氨酸模式C-C-CC-C-C)主要作用于电压门控离子通道(又称电压敏感性通道),包括C

关于I超家族的基本信息介绍

  已发现了几十个I-超家族芋螺毒素(I-CTX),该家族毒素比一般的芋螺毒素要大,并且成熟肽超变异。I-超家族芋螺毒素通常由33~46个氨基酸组成,含有4对二硫键。分子生物学研究发现,每个芋螺毒素均有单一的mRNA编码,原始翻译产物是它们的蛋白前体。前体通常由N-端的信号肽,中间的Pro区和C-端

鸡心螺中发现新毒素,有望研发出更好的糖尿病药物

近日,国际学术期刊《自然-通讯》(Nature Communications)在线发表研究论文:来自美国犹他大学的科研人员在致命的芋螺(鸡心螺)毒液中发现了一种新毒素,其特殊而持久的作用有望帮助科学家设计出更好的药物,来治疗糖尿病或激素紊乱。这种毒素被命名为“consomatin ”。从致命的毒液中

“十二五”863计划生物和医药技术领域项目取得重要进展

  “十二五”863计划生物资源与安全主题项目“特种生物资源开发利用关键技术”以重点产品和工艺开发为目标,围绕特殊菌类资源、高值经济植物、特殊药用资源以及特殊微生物资源展开研究,旨在建立一批具有中国特色和自主知识产权的特种生物资源功能菌株库、功能基因库和分子酶库,形成一批针对特种生物资源开发的技术平

毒蘑菇“毒素合成”背后的秘密

  野生蘑菇可能含有毒素不能乱吃已经成为常识,而世界上最毒的蘑菇隐藏于鹅膏、盔孢伞和环柄菇三个属中。事实上,早在一百多年前人们就已发现,上述三个属中的剧毒蘑菇之间的亲缘关系较远,分别隶属分类学中三个不同的科,但却都能合成同一类毒素:鹅膏毒肽。但是,“鹅膏毒肽生产线”如何进化而来一直是个谜题。  近日

毒蘑菇“毒素合成”背后的秘密

  野生蘑菇可能含有毒素不能乱吃已经成为常识,而世界上最毒的蘑菇隐藏于鹅膏、盔孢伞和环柄菇三个属中。事实上,早在一百多年前人们就已发现,上述三个属中的剧毒蘑菇之间的亲缘关系较远,分别隶属分类学中三个不同的科,但却都能合成同一类毒素:鹅膏毒肽。但是,“鹅膏毒肽生产线”如何进化而来一直是个谜题。  近日

毒蘑菇“毒素合成”背后的秘密

   野生蘑菇可能含有毒素不能乱吃已经成为常识,而世界上最毒的蘑菇隐藏于鹅膏、盔孢伞和环柄菇三个属中。事实上,早在一百多年前人们就已发现,上述三个属中的剧毒蘑菇之间的亲缘关系较远,分别隶属分类学中三个不同的科,但却都能合成同一类毒素:鹅膏毒肽。但是,“鹅膏毒肽生产线”如何进化而来一直是个谜题。  近

简述螺内酯的物化性质

  外观与性状:白色粉末,有轻微硫醇臭  密度:1.24g/cm3  熔点:207-208 °C(lit.)  沸点:597ºC at 760mmHg  闪点:302.3ºC  溶解性:在氯仿中极易溶解,在苯或醋酸乙酯中易溶,在乙醇中溶解,在水中不溶。  稳定性:常温常压下稳定。  储存条件:库房通

简述螺内酯的适应症

  1.水肿性疾病与其他利尿药合用,治疗充血性水肿、肝硬化腹水、肾性水肿等水肿性疾病,其目的在于纠正上述疾病时伴发的继发性醛固酮分泌增多,并对抗其他利尿药的排钾作用。也用于特发性水肿的治疗。  2.高血压作用为治疗高血压的辅助药物。  3.原发性醛固酮增多症可用于此病的诊断和治疗。  4.低钾血症的

简述螺内酯的药理作用

  螺内酯为类固醇,是作用强烈的内源性盐类皮质激素醛固酮。螺内酯与醛固酮有类似的化学结构,在远曲小管和集合管的皮质段上皮细胞内与醛固酮竞争结合醛固酮受体,从而抑制醛固酮促进K-Na交换的作用。使Na和Cl排出增多,起到利尿作用,而K则被保留。该药利尿作用较弱,缓慢而持久。连续用药一段时间后,其利尿作

简述霉菌毒素的特征

  ◆低分子化合物。  ◆非常稳定,可耐高温,即使加热到340℃也不会将其分解和破坏。  ◆抗化学生物制剂及物理的灭活作用。  ◆具有广泛的中毒效应。  ◆特异性:分子结构不同,毒性相差很大。例如,据报道,黄曲霉毒素B1是常见的一种霉菌毒素,但是仅改变分子结构中的一个化学键,它的毒性显著下降。  ◆

海芋的介绍

  海芋,中药名。为天南星科植物海芋 Alocasia macrorrhiza (L.) Schott 的根茎或茎。分布于华南、西南及福建、台湾、湖南等地。具有清热解毒,行气止痛,散结消肿之功效。常用于流感,感冒,腹痛,肺结核,风湿骨痛,疔疮,痈疽肿毒,瘰疬,附骨疽,班秃,疥癣,虫蛇咬伤。

简述螺内酯的有关物质的介绍

  本品为白色或类白色的细微结晶性粉末;有轻微硫醇臭。  本品在三氯甲烷中极易溶解,在苯或乙酸乙酯中易溶,在乙醇中溶解,在水中不溶。  1、熔点  本品的熔点(2010年版药典二部附录ⅥC)为203~209℃,熔融时同时分解。  2、比旋度  取本品,精密称定,加三氯甲烷溶解并定量稀释制成每1mL中

新技术促材料合成又快又好

   当前,许多新兴产业都是材料密集型产业,如光伏、锂电、车辆和风机叶片的轻质合金、燃料电池隔膜等,都要应用到先进材料。“我国的材料科技工业起步较晚,虽经多年攻关,在整体水平上与先进国家仍有差距,制约诸多重大战略领域的发展。迅速提升我国在材料领域的核心科技水平和工业制造能力,是材料产业发展的内在需求

简述螺内酯中毒的临床表现

  不良反应表现如下:  1.中枢神经系统  头痛、眩晕、衰弱、嗜睡、精神错乱及共济失调等。  2.消化系统  厌食、恶心、呕吐、胃痉挛、腹痛、腹泻等。  3.内分泌系统  男性乳房发育、性欲低下、阳痿、少精子症;女性乳房增大和疼痛、女性多毛症、月经不调或闭经、乳房硬结及偶见乳腺癌报告。  4.代谢

蓖麻毒素抑制蛋白质合成

  蓖麻毒素具有强烈的细胞毒性,属于蛋白合成抑制剂或核糖体失活剂,这也是在构建免疫毒素时,应用到蓖麻毒素的主要原因。  合成的机理在20世纪70年代已经明确。首先,毒素依靠B链上的半乳糖结合位点与细胞表面含末端半乳糖残基的受体结合,促进整个毒素分子以内陷方式进入细胞,形成细胞内囊,毒素从细胞内囊中进

简述从头合成的合成过程

  嘌呤核苷酸的从头合成  早在1948年,Buchanan等采用同位素标记不同化合物喂养鸽子,并测定排出的尿酸中标记原子的位置的同位素示踪技术,证实合成嘌呤的前身物为:氨基酸(甘氨酸、天门冬氨酸(天冬氨酸)、和谷氨酰胺)、CO2和一碳单位(N10甲酰FH4,N、N10-甲炔FH4)。  随后,由B

无需活细胞的蛋白合成新技术

  来自美国能源部橡树岭国家实验室(Oak Ridge National Laboratory)的研究人员研发出了一种无需细胞培养,人工合成蛋白质的新系统,这一研究成果公布在12月22日的Small杂志上。  这个生物反应器采用的是一种混合液,其中包含有大肠杆菌细胞提取物,一种绿色荧光蛋白DNA编码

无需活细胞的蛋白合成新技术

  来自美国能源部橡树岭国家实验室(Oak Ridge National Laboratory)的研究人员研发出了一种无需细胞培养,人工合成蛋白质的新系统,这一研究成果公布在12月22日的Small杂志上。  这个生物反应器采用的是一种混合液,其中包含有大肠杆菌细胞提取物,一种绿色荧光蛋白DNA编码

简述银环蛇毒素的应用

  蛇毒神经毒素能抑制中枢神经系统,尤其是延髓呼吸中枢,对周围神经系统的作用主要是阻断神经-肌肉接头处冲动的传导,导致骨骼肌尤其是呼吸肌瘫痪。林鲁萍等采用小鼠化学法镇痛试验表明,重组α-银环蛇毒素有一定的镇痛药效,在外周镇痛作用中呈一定的量效关系。于是人们根据蛇毒α-神经毒素这一性质开发出了不成瘾的

海芋的形态特征

  多年生草本,高可达5m。茎粗壮,粗达30cm。叶互生;叶柄粗壮,长60-90cm,下部粗大,抱茎;叶片阔卵形,长30-90cm,宽20-60cm,先端短尖,基部广心状箭头形,侧脉9-12对,粗而明显,绿色。花雌雄同株;花序柄粗壮,长15-20cm;佛焰苞的管长3-4cm,粉绿色,苞片舟状,长10

多肽硫酯蛋白合成新技术

伦敦大学Macmillan研究组对采用化学配体技术合成经修饰改变的肽和蛋白感兴趣。蛋白合成和半合成——由合成和重组来源制备的多肽片段——对生产治疗性蛋白和理解转录后主导修饰的机制很重要。理解该过程很困难,因为它们不是按模板工作,也不直接受遗传控制。Macmillan组研究采用有机合成化学、分子生物学

T2毒素,伏马毒素,赭曲霉毒素偶联抗原合成方法技术

  T2毒素,伏马毒素,赭曲霉毒素偶联抗原    (人工抗原、完全抗原、酶标抗原)合成方法技术   T2毒素,伏马毒素,赭曲霉毒素是粮食作物里比较少见的毒素,但是其危害是显而可见的,目前,检测T2毒素,伏马毒素,赭曲霉毒素的酶联免疫法,免疫胶体金法等检测方法均需要T2毒素抗原抗体,伏马毒素抗原抗