大脑视交叉上核神经元的初级纤毛调控机体节律

生物钟的准确性和稳定性与健康息息相关。节律如果发生异常,可引发睡眠障碍、代谢紊乱、免疫力下降,严重时可导致肿瘤、糖尿病、精神异常等重大疾病的发生。大脑的视交叉上核(SCN)是生物钟的指挥中枢,协调外周器官的生物钟,调控多种生理功能,包括免疫力、体温、血压、食欲等。但是SCN维持机体内部节律稳定性,从而抵御外界环境的干扰的机制尚不明确。 来自军事科学院军事医学研究院的研究团队发现大脑视交叉上核(SCN)神经元的初级纤毛是调控机体节律的细胞器,揭示了“有形”生物钟的存在及其节律调控机制。该研究成果于近日发表在《Science》杂志上,题为:Rhythmic Cilia Changes Support SCN Neuron Coherence in Circadian Clock。 研究人员通过对脑切片纤毛结构的连续观察,并建立时差动物模型,发现纤毛特异缺陷小鼠SCN神经元间的通讯能力大为减弱,不能实现同频共振,同时失去了对外......阅读全文

大脑视交叉上核神经元的初级纤毛调控机体节律

  生物钟的准确性和稳定性与健康息息相关。节律如果发生异常,可引发睡眠障碍、代谢紊乱、免疫力下降,严重时可导致肿瘤、糖尿病、精神异常等重大疾病的发生。大脑的视交叉上核(SCN)是生物钟的指挥中枢,协调外周器官的生物钟,调控多种生理功能,包括免疫力、体温、血压、食欲等。但是SCN维持机体内部节律稳定性

Neuron:哪个神经元控制生物钟节律?

  最近,美国德克萨斯大学(UT)西南医学中心的神经科学家,确定了对决定昼夜节律至关重要的神经元。生物钟昼夜节律是一个24小时过程,控制着睡眠和清醒周期,以及其他重要的身体功能,如激素的分泌、代谢和血压。延伸阅读:美国院士Science:生物钟周期的关键因素。  昼夜节律是由位于大脑下丘脑的视交叉上

Science:揭示大脑星形胶质细胞在控制昼夜节律中新作用

  在一项新的研究中,来自英国剑桥大学医学研究委员会分子生物学实验室的研究人员发现星形胶质细胞,即包围并支持大脑神经元的“看护”细胞,在昼夜节律(即身体24小时的生物钟)中起着比之前理解的更重要的作用。星形胶质细胞之前被认为仅是支持调节昼夜节律的神经元,但是这项新的研究指出它们实际上能够引导这种体内

哺乳动物昼夜节律神经机制获突破

  昼夜节律在生物体中广泛存在,对调节人们一天之中的运动、睡眠、代谢等诸多生理过程起着重要的作用。在人类社会中,如果这个生物钟紊乱会导致包括睡眠障碍在内的各种疾病,那么,它在神经系统中是如何产生、维持以及发挥作用的?  中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中

缺失SOX2,时差紊乱,整只鼠都不好了

  生物钟滴答滴答作响的原因是什么?根据多伦多大学密西沙加分校(UTM)的一项新研究,令人惊讶的答案在于一个通常与干细胞和癌细胞有关的基因。PHOTO CREDIT: SIBYA VIA PIXABAY  作为昼夜节律生物学领域的首个同类研究,UTM的研究人员使用RNA测序来观察视交叉上核(supr

解码生物钟-哺乳动物昼夜节律神经机制获突破

  昼夜节律在生物体中广泛存在,对调节人们一天之中的运动、睡眠、代谢等诸多生理过程起着重要的作用。在人类社会中,如果这个生物钟紊乱会导致包括睡眠障碍在内的各种疾病,那么,它在神经系统中是如何产生、维持以及发挥作用的?  中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中

控制机体昼夜节律钟同步的特殊基因

  近日,刊登在国际杂志eLife上的一篇研究论文中,来自索尔克研究所的科学家们通过研究鉴别出了一种可以调节睡眠觉醒昼夜节律的基因,这种名为Lhx1的基因或许就为研究人员提供了一个新型靶点,供其开发帮助夜班工人及时差综合症患者改善昼夜节律的疗法,同时也为开发治疗一系列睡眠障碍的靶向疗法提供思路。  

用眼药水就能够对抗“时差反应”?

  如果你要出国长途旅行,时差反应带来的不便显然是一个需要考虑在内的问题。目前医学界对时差依然束手无策。不过,一项新研究发现,或许能够通过作用于眼睛中的某些细胞来重置生物钟。这项于4月17日发表在The Journal of Physiology上的研究可能在不久的将来能够应用于眼药水的开发,帮助人

Science:生物钟紊乱影响你的记忆力

  斯坦福大学的科学家们发现,当昼夜节律被破坏时,大脑的视交叉上核(SCN)会干扰学习和记忆能力,这样的现象也存在于阿尔茨海默症等神经退行性疾病中。他们切除了受损的SCN,结果仓鼠的记忆能力完全恢复。这项发表在Science杂志上的研究,为治疗相关疾病提供了一条全新的途径。  “大脑的视交叉上核(S

科学家揭示胰岛素敏感性的昼夜节律调控机制

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/455010.shtm   复旦大学附属妇产科医院/生殖与发育研究院丁国莲课题组与美国贝勒医学院孙正课题组、山东大学齐鲁医院陈丽课题组等合作,发现下丘脑视交叉上核(SCN)区GABA神经元的R

老年人起得早?因为昼夜节律弱!

  肯特大学的神经生理学家发现,衰老会引起视交叉上核(suprachiasmatic nucleus,SCN)对光的敏感性显著降低,SCN是控制昼夜节律的一部分脑区。  肯特大学药学院教授Gurprit Lall博士和研究小组的其他成员在探讨大脑节律控制途径时发现,负责传递光信息的谷氨酸受体(NMD

肝脏的昼夜节律以及饮食对其的影响

  在生物进化早期,生物体已经发展了一种高度保守的分子计时器,即生物钟系统,它使机体行为、生理呈现近似24h的节律。生物钟由中枢生物钟和外周生物钟组成,中枢生物钟位于下丘脑的视交叉上核(Suprachiasmatic Nucleus,SCN),在眼部传来的环境明暗信息的强烈影响下,SCN作为“主生物

生物钟细胞节律紊乱致睡眠障碍

  日本研究人员4月10日报告说,他们通过动物实验发现,一种遗传性睡眠障碍是脑内生物钟细胞的节奏出现紊乱导致的。   控制体内生物钟的生物钟细胞,存在于脑内的视交叉上核,它们会产生以一天为周期的节律。而视交叉上核是哺乳动物昼夜节律调节系统的中枢结构。   日本北海道大学研究生院教授本间研一率领的

科学家发现了肝脏具有独特的昼夜节律调节功能

  近日,美国加利福尼亚大学等科研机构的科研人员在Cell上发表了题为“Defining the Independence of the Liver Circadian Clock”的文章,发现了肝脏具有独特的昼夜节律调节功能。  哺乳动物依靠生物钟网络控制日常的全身代谢和生理活动。下丘脑视交叉上核

严军研究组通过单细胞测序技术发现新的神经元亚型

  2月18日,《自然-神经科学》期刊在线发表了题为《小鼠视交叉上核基因表达的时空单细胞分析》的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室严军研究组完成。该研究通过单细胞测序技术对小鼠昼夜节律中枢——视交叉上核进行了系

科学家发现大脑时钟基因:人类或有望战胜时差

  再悉心的照料,再软的枕头,再舒服的光子浴,都不能让那些周游世界的土豪逃离时差的折磨。然而,最近的一项研究宣称科学家找到了一种强而有效的方式来解决这个问题:他们发现了一种可以修改睡眠周期主导基因的药物,来帮助这些憔悴的旅行者调整时差。不仅如此,所有的睡眠问题都可能得到解决。  有Lhx1才有时差反

PNAS:生物钟决定你什么时候更脆弱

  剑桥大学的研究人员发现,在一天中的某些时段我们更容易受到病毒感染,因为人体生物钟能够影响病毒的复制和扩散。经常倒夜班会扰乱生物钟,使人更容易出现健康问题。这项研究最近发表在美国国家科学院院刊PNAS杂志上。  病毒进入机体之后,会抢夺我们的细胞资源帮助自己生长和繁殖。不过细胞资源在一天中存在着波

Cell-Metabolism-|-医学的第四维——生物节律

  众所周知,2017 诺贝尔生理或医学奖颁发给了三位美国遗传学家杰弗里·霍尔(Jeffrey C. Hall)、迈克尔·罗斯巴什(Michael Rosbash),以及迈克尔·杨(Michael W. Young),以表彰他们在发现果蝇生物节律分子机制方面的贡献。而在此前,医学界真正将生物节律——

惊人发现:灯光会加速衰老?

  除了健康饮食和适当锻炼,你可能需要培养一个新的好习惯——关灯。七月十四日Current Biology杂志发表的一项研究表明,持续光照会给小鼠健康带来许多负面的影响。   “我们的工作显示,环境光线的明-暗循环对健康很重要,”Leiden大学医学中心的Johanna Meijer指出。缺乏明-暗

Science挑战生物钟传统认知,多指挥的管弦乐队

  当你的工作轮调到上夜班时,你的体重有可能会因此猛增;当你在每个工作日的早上7点醒来,周末却一直睡到正午时,你的周六和周日有可能会过得晕晕乎乎。   “生物钟驱使我们的生活按照一定的节律运转,破坏这些周期会导致严重的身体和情绪问题”密歇根大学分子、细胞和发育生物学助理教授Orie Shafe

详解:2023年度“中国科学十大进展”

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/518131.shtm2月29日,国家自然科学基金委员会发布了2023年度“中国科学十大进展”,分别为:人工智能大模型为精准天气预报带来新突破、揭示人类基因组暗物质驱动衰老的机制、发现大脑“有形”生物钟的存

“生物钟”不可小觑-突破性研究共同解读生物钟奥秘

  “日出而作,日落而息”,地球上大部分生物从几十万年前就开始就遵从这种大自然的特殊规律。当然日常生活中人们也并没有非常在意这中自然规律/现象,直到现代医学的发展进步才让我们将这种顺应自然的规律同生物钟画起了等号。当然随之而来的就是科学家们对生物钟的各种深度研究。  很多科学研究都发现,人类生活中各

国家自然科学基金委:2023年度“中国科学十大进展”

  2024年2月29日,国家自然科学基金委员会发布了2023年度“中国科学十大进展”。  2023年度“中国科学十大进展”分别为:  人工智能大模型为精准天气预报带来新突破  揭示人类基因组暗物质驱动衰老的机制  发现大脑“有形”生物钟的存在及其节律调控机制  农作物耐盐碱机制解析及应用  新方法

Cell新文章:机体衰老的“时钟”

  人体有一个内部生物钟,密切对应着24小时光暗循环周期,人类的作息模式很大程度上就是由生物钟支配。这一生物钟还可以控制机体的其他功能,例如代谢和体温调节。   动物研究发现,当昼夜节律紊乱之时,就会出现诸如肥胖等健康问题和糖尿病等代谢疾病。针对夜班人员展开的研究,也揭示他们的糖尿病易感性增高。

《自然》:科学家发现影响生物钟节律蛋白质

  很多植物春季开花,秋季结果;夜行动物白天睡大觉,夜晚则四处“狩猎”。决定这些生理节律的生物周期被称为“生物钟”。阿根廷研究人员发现,一种蛋白质能通过参与某些生物的生长发育机制,影响它们的生物钟节律。  阿根廷生理学、分子生物学和神经科学研究院专家埃塞基耶尔·彼得里洛等人在新一期英国《自

突触发育也有昼夜节律性

  日出而作,日落而息。在人类行为的背后,是生物钟的调控。发育或许也是如此。日前,我国科学家以经典的视网膜-视顶盖突触为模型,运用在体双光子长时程成像,发现了发育早期突触形成速率存在昼夜节律性,为生物钟参与调节动物发育过程奠定了重要理论基础,为认识神经环路连接建立的发育规律提供了重要实验依据。  该

维持我们生物钟的竟然是大脑中的这些填充物?

  科学家们发现,曾经被认为只是简单地为神经元占位的脑细胞实际上可能在帮助调节昼夜节律行为方面发挥重要作用。  星形胶质细胞是一种神经胶质细胞 – 即通常被称为“神经系统的胶水”的、为神经元提供支撑和保护的支持细胞。 但是一项新的研究表明,星形胶质细胞不仅仅是间隙填充剂,而且它对于保持我们身体的内部

-英找到妨碍生物钟调整的机制-可用药物来倒时差

  对于国际旅行来说,长时飞行后倒时差是一个令人头痛的事,许多人会因时差的影响而很长时间无法适应新的生活节律。最近,英国牛津大学一项新研究确认了一个限制生物钟适应光暗转换模式变化能力的新机制,未来据此而开发的新药或许会帮助人们快速调整时差,进而免受时差综合征的困扰。   地球上几乎所有的生命都遵循

Cell:光真的能影响我们的情绪和学习

  其实很长一段时间里,科学家们都认为光对于人体的影响重大,比如冬季日光时间减少,会导致抑郁情绪增多,这是昼夜节律中断的间接后果,但是其中的机制,科学家们尚不清楚。  来自美国NIH的研究人员发现了光敏视网膜神经节细胞(intrinsically photosensitive retinal gan

癌细胞疯狂扩张,暂停生物钟,恢复昼夜节律便可灭肿瘤

  如人类一样,细胞也有“生物钟”,会依据自然的“昼夜交替”周期来调节各类蛋白的高低表达,以此控制新陈代谢。然而令人大跌眼镜的是,癌细胞却“偷偷”在“加班”,能够不顾昼夜节律来消耗大量营养物质,加速扩张。  近日,《Nature Communications》上的一项题为Restoration of