科学家构建深度脉冲神经网络学习框架
脉冲神经网络(Spiking Neural Network,SNN)被誉为第三代神经网络,使用更低层次的生物神经系统的抽象。它既是神经科学中研究大脑原理的基本工具,又因稀疏计算、事件驱动、超低功耗的特性,备受计算科学的关注。随着深度学习方法的引入,SNN的性能得到大幅提升,脉冲深度学习(Spiking Deep Learning)成为新兴的研究热点。传统SNN框架更多地关注生物可解释性,致力于构建精细脉冲神经元并仿真真实生物神经系统,不支持自动微分,无法充分利用GPU的大规模并行计算能力,并缺乏对神经形态传感器和计算芯片的支持。 中国科学院自动化研究所研究员李国齐与北京大学计算机学院教授田永鸿团队合作,构建并开源了脉冲神经网络深度学习框架SpikingJelly(中文名为“惊蜇”)。“惊蜇”提供了全栈式的脉冲深度学习解决方案,支持了神经形态数据处理、深度SNN的构建、替代梯度训练、ANN转换SNN、权重量化和神经形态芯片部......阅读全文
人脸检测发展:从VJ到深度学习(三)
在确定了选择窗口的策略,设计好了提取特征的方式,并学习了一个针对人脸和非人脸窗口的分类器之后,我们就获得了构建一个人脸检测系统所需要的全部关键要素——还有一些小的环节相比之下没有那么重要,这里暂且略去。 由于采用滑动窗口的方式需要在不同大小的图像上的每一个位置进行人脸和非人脸窗口的判别
深度学习“见顶”不等于AI寒冬
尽管新的算法模型在推动AI向前发展,但并不意味着它们的前景可以预见,也不意味着深度学习“不可救药”。 在当前的第三次人工智能(AI)浪潮之中,深度学习算法被认为是迄今为止“最为重大的AI革命”。此说法或许有所夸大,但深度学习对这一轮AI的大爆发而言的确功不可没。然而,最近以来,关于深度学习算
深度学习算法-助力精准诊断结直肠肿瘤
根据发表在《Life Science Alliance》杂志上的新研究,一种新的深度学习算法可以快速,准确地分析来自结直肠肿瘤的几种基因组数据,以进行更准确的分类,从而有助于改善诊断和相关的治疗选择。 大肠肿瘤的发展方式各不相同,需要接受的药物类型也不同,生存率也大不相同。通常,基于对基因表达
基于深度学习的化纤外观缺陷语义分割
摘要: 针对化纤外观缺陷检测使用基于深度学习的语义分割方法,总结了自2014年以来基于深度学习的典型语义分割方法,并在此基础上应用到化纤外观检测项目上,取得了不错的效果。 01 化纤外观缺陷检测背景 化纤作为纺织制造的原料,由化纤生产企业进入下游纺织企业前会收卷形成丝饼,但在丝饼
深度学习模型成功识别胚胎发育过程
英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。普利茅
人脸检测发展:从VJ到深度学习(一)
这是一个看脸的世界!自拍,我们要艺术美颜;出门,我么要靓丽美妆。上班,我们要刷脸签到;回家,我们要看脸相亲。 当手机把你的脸变得美若天仙,当考勤机认出你的脸对你表示欢迎,你知道是什么魔力让冷冰冰的机器也变得温情脉脉,让呆呆的设备也变得善解人意吗?今天就让我们走近它们的内心,了解这些故事背后的一项
深度学习模型成功识别胚胎发育过程
英国普利茅斯大学牵头的研究表明,一种新的深度学习人工智能(AI)模型可通过视频,识别出胚胎发育过程中发生的事件及其发生时间。29日发表在《实验生物学杂志》上的论文,重点介绍了这种名为“Dev-ResNet”的模型,它能识别出动物胚胎中何时发育出了关键功能,包括其心脏功能、孵化、爬行,甚至死亡。
深度学习在雷达中的研究综述(三)
3.2 基于SAE的SAR图像处理研究SAE的特点是可自动从无标记数据中学习特征,并且给出比原始数据更好的特征描述,进一步通过该学习到的特征得到更好的分类效果。有学者将其应用于地物目标分类、舰船分类以及城市变化检测等场景。并且通过SAE对SAR图像进行分析,其与传统方法相比,展现SAE具有自动学习高
DeepDEP:深度学习构建肿瘤依赖性图谱
大家好呀!今天给大家介绍一篇2021年发表在Science Advances上的文章。全基因组功能缺失筛查揭示了对癌细胞增殖十分重要的基因,称为肿瘤依赖性。然而将肿瘤依赖性关系与癌细胞的分子组成联系起来并进一步与肿瘤联系起来还是一个巨大的挑战。本研究,作者提出了DeepDEP,基于深度学习模型和
深度学习在雷达中的研究综述(二)
其中, J(w,b) 为对应自编码器代价函数, β 为控制系数性惩罚因子权重。2.3 DBN基本原理DBN是一个概率生成模型,其建立一个观测数据与标签之间的联合分布。并且DBN由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)组成,典型的DBN结构如图4所示。
深度学习在雷达中的研究综述(一)
深度学习在雷达中的研究综述王俊, 郑彤, 雷鹏, 魏少明 摘要:雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过
科学家发现深度神经网络对幻觉轮廓“视而不见”
近日,中科院自动化所研究员曾毅团队研究发现,从经典的到最先进的深度神经网络都难以像人一样具有较好的幻觉轮廓识别能力。相关研究成果发表于细胞出版社旗下期刊《模式》。神经网络和深度学习模型在过去十年中看似取得巨大成功,在许多给定的视觉任务中在指定方面超过了人类表现。然而,神经网络的性能仍然会随着各种图像
自动化所研发出全脉冲神经网络的类脑认知智能引擎
中国科学院自动化研究所研究员曾毅带领的类脑认知智能团队,打造出全脉冲神经网络的类脑认知智能引擎(Brain-inspired Cognitive Intelligence Engine,简称为BrainCog,中文名为“智脉”),并进行全面开源开放,为探索面向通用人工智能的类脑智能研究提供基础性
声学所提出一种基于深度学习的水下目标定位新方法
近年来,浅海声源定位,尤其是水下低频宽带声源的定位问题,受到了国内外研究者的广泛关注。匹配场等传统方法需要环境的先验知识对声场进行建模,而环境参数瞬息万变,往往不能准确获得,环境参数的这种不确定性会造成传统方法的定位性能不佳。 为了减少对环境先验知识的依赖,近日,中国科学院声学研究所语言声学与
大脑神经元的自反馈机制启发更好的类脑人工智能
原文地址:http://news.sciencenet.cn/htmlnews/2022/9/486144.shtm 近日,中国科学院自动化研究所类脑智能研究中心研究员曾毅团队在《神经网络》上发表了一项新研究,研究将来自生物脑神经元自身反馈以及兴奋抑制性神经元平衡的启发,融入类脑脉冲神经网络的理
未来无人机像飞鸟一样轻捷智能
原文地址:http://news.sciencenet.cn/htmlnews/2024/5/523615.shtm ?上图为第一架采用完全视觉控制的神经形态AI无人机。下图为神经形态无人机飞越花朵图案,无人机从放在角落的神经形态相机接收到视觉输入。红色表示像素变暗,绿色表示像
科学家找到深度学习基因组学应用的一顶“黑帽子”
研究人员首次将深度学习与贝叶斯假设检验结合,利用深度学习强化RNA可变剪接分析的准确性。 在生命科研领域,常有人说深度学习的基因组学应用好比是“一个盲人在一间黑暗的房子里寻找一顶并不存在的黑色帽子”。言下之意,是遗憾深度学习的基因组学应用并没有给人们带来太多惊喜。不过,近日宾夕法尼亚大学和费
分子反应预测研究中取得新进展
近日,华中农业大学人工智能与知识发现团队提出了一种适用于多种分子网络关联预测任务的、可迁移的对比自监督深度图神经网络模型:CSGNN。此项工作是图神经网络在分子网络关联预测应用的最新成果。 大数据时代存在不同类型的分子网络,例如药物-靶点互作网络,药物-疾病关联网络、蛋白质-蛋白质互作网络等,
边缘计算实现AI智能互联世界
在电子智能领域,所有类型的芯片厂商都不约而同的研发推出各种不同类型的AI处理器。国外大企,像高通、英伟达等,都已宣布推出用于智能手机和其他移动设备的神经引擎。例如在智能手机中添加AI功能和手机的Face ID应用等。使用边缘侧AI自行处理相比传输到云端处理更安全、私密,响应时间更快。按照整体大趋势,
日本借深度神经网络破译人类思维-人工智能走近大脑
外媒称,日本研究人员已经成功借助人工智能破译了人类的思维和想象,从而在理解人类思想及其背后的大脑机制领域获得了重大突破。 据阿根廷 21 世纪趋势网站 6 月 6 日报道,破解人类思维的内容是科学界长久以来的愿望。事实上,此前的种种研究也已经实现了破译人类所见、回忆、想象和梦境的内容。 例如
时空稀疏小样本学习大规模神经形态数据集发布
近日,中科院自动化研究所研究员曾毅团队提出了一个用于时空稀疏小样本学习的大规模神经形态数据集——N-Omniglot,为脉冲神经网络的学习与训练提供了一个更具挑战性的基准。相关研究成果发表于自然出版社旗下期刊《科学数据》。 深度学习的成功在很大程度上归功于像ImageNet和COCO这样的数据集的引
深度学习可识别显微照片中的细菌
美国华盛顿大学研究人员开发出一种深度学习软件Omnipose,其能帮助解决在显微镜图像中识别各种微小细菌的挑战。研究结果发表在17日的《自然·方法学》杂志上。 研究人员发现,在大型细菌图像数据库上训练的Omnipose在表征和量化混合微生物培养物中的无数细菌方面表现良好,并消除了其前身可能出现的
深度学习增强里德堡多频微波识别
图为机器学习解码结果。(a-c)为训练时间不同时,深度学习模型对传输信号的恢复结果 中国科大供图里德堡原子具有较大的电偶极矩,可以对微弱的电场产生很强的响应,因此作为一个非常有前景的微波测量体系,备受人们青睐。但基于里德堡原子的微波测量领域还存在很多科学问题亟待解决,多频率微波接收就是其中一项难题
深度学习增强型智能镜可指导健身
意大利布雷西亚大学的研究人员最近开发了一种用于智能镜子的计算机视觉系统,可以提高家庭和健身房环境中健身训练的效率。在国际体育生物力学学会会议上公布的一篇论文中介绍了这一系统,该系统基于一种深度学习算法,经过训练可以识别健身视频中记录的人体姿势。 这款低成本计算机视觉系统利用骨架化算法,在带
深度学习模型筛查新药快千倍
据美国麻省理工学院(MIT)官网12日报道,该校科学家开发出一款名为EquiBind的几何深度学习模型,其将类药物分子与蛋白配对的效率比现有最快的计算分子配对模型QuickVina2-W快1200倍。相关研究已经提交预印本服务器,并将提交给国际机器学习大会。 在药物开发之前,研究人员必须找到有潜
深度学习模型筛查新药快千倍
据美国麻省理工学院(MIT)官网12日报道,该校科学家开发出一款名为EquiBind的几何深度学习模型,其将类药物分子与蛋白配对的效率比现有最快的计算分子配对模型QuickVina2-W快1200倍。相关研究已经提交预印本服务器,并将提交给国际机器学习大会。 在药物开发之前,研究人员必须找到有
自动化所研发出类脑脉冲神经网络加速器
近日,中国科学院自动化研究所曾毅研究员课题组提出基于FPGA的脉冲神经网络硬件加速器“智脉·萤火”(FireFly),并集成了针对FPGA器件特点的DSP运算优化策略和适配脉冲神经网络数据流模式的高效的突触权重和膜电压访存系统,在硬件上实现了脉冲神经网络的推理加速,推动了类脑脉冲神经网络迈向实用
上海交大神经网络损失研究——NeurIPS-2021录用为亮点论文
近日,上海交通大学自然科学研究院和数学科学学院的深度学习基础理论团队张耀宇、张众望(学生)、罗涛和许志钦发现了不同宽度的深度神经网络的损失景观之间一种普遍内禀的联系,他们称之为嵌入原则(Embedding Principle)。研究成果《Embedding Principle of Loss L
中科院合肥研究院团队提出一种新型人工智能框架
中新网合肥10月14日电 (吴兰 陈坤)记者14日从中科院合肥研究院获悉,该院智能所先进制造技术研究中心王红强研究员团队提出了一种新型目标检测人工智能框架,为快速高精度实时在线目标识别提供了新的解决方案。相关工作发表在计算机科学及工程技术领域顶刊 Expert Systems With Applic
百度王海峰:AI创新和发展,进入“深度学习+”阶段
进入2023年,百度首席技术官王海峰对创新和增长充满乐观。 “‘深度学习+’,是创新发展新引擎,驱动技术发展和产业增长,让创新创造大有可为。”在百度Create AI开发者大会上,王海峰提出“深度学习+”:人工智能(AI)的技术创新和产业发展,已经进入“深度学习+”阶段。 他指出,深度