上海有机所惰性碳碳键立体选择性活化转化研究取得进展

碳碳键【C(sp3)–C(sp3)】是有机分子三维结构的核心化学键,其断裂重组反应可以实现分子结构的快速改造与重构,可为药物分子合成提供新颖、高效的合成方法。然而,碳碳单键的高键能、弱极化等特性,使得这类转化反应颇具挑战性。特别是,基于碳碳键的可逆断裂与重构碳中心实现手性富集这一课题,至今尚未得到有效解决。近日,中国科学院上海有机化学研究所金属有机化学国家重点实验室左智伟课题组,利用配体金属电荷转移催化(LMCT catalysis)策略,首次实现了非张力碳碳键断裂-立体重组,为仲醇和叔醇的不对称合成提出了新范式。该催化体系建立了手性放大和手性富集的新过程,突破了去消旋化反应不能应用于连续手性和季碳手性的局限,通过系统性机理研究,进一步揭示了去消旋化反应中催化剂手性放大的倍增效应和立体选择性乘积公式(er=kRk-S/kSk-R)。10月26日,相关研究成果以Multiplicative enhancement of......阅读全文

手性季碳分子制备新策略

  手性四取代碳中心分子的制备是不对称合成中最具挑战的领域之一。然而,直接不对称催化策略高度依赖于潜手性底物两个取代基的电性和/或位阻的不同,当四取代碳中心分子中含有多个电性和位阻相近的取代基时,目前的不对称催化策略难以实现此类分子的制备。  在中科院战略性先导科技专项、国家自然科学基金、福建省自然

有机小分子催化构建手性季碳中心研究获进展

  中国科学院广州生物医药与健康研究院胡文辉课题组在通过有机小分子催化构建手性季碳中心研究中取得系列新进展,相关成果以封面论文的形式发表在国际有机化学期刊《先进合成与催化》(Advanced Synthesis & Catalysis, 2015, 357, 2437-2441, Very Impo

甲醇制烯烃第一个碳碳键生成的功臣沸石分子筛

  近日,中国科学院武汉物理与数学研究所研究员邓风和徐君团队在甲醇制烯烃反应机理研究中取得新进展,发现沸石分子筛的非骨架铝物种在第一个碳-碳(C-C)键生成过程中起到了关键作用,并揭示了相关的催化反应机理。研究结果在线发表在《德国应用化学》(Angew. Chem. Int. Ed.)杂志上。  乙

药物分子手性的意义

手性药物?指只含有单一对映体的药物为手性药物。手性药物是二十一世纪发展的重要方向手性似乎有些陌生又有些时髦,实际上手性在自然界是非常普遍的现象,在化学里就是一种同分异构现象。含有两个互为对映异构体的化合物称为手性化合物,其中仅含一个对映体的化合物称为光学纯手性化合物,分别含有这样化合物的药物称为手性

福建物构所提出手性季碳分子制备新策略

  手性四取代碳中心分子的制备是不对称合成中最具挑战的领域之一。然而,直接不对称催化策略高度依赖于潜手性底物两个取代基的电性和/或位阻的不同,当四取代碳中心分子中含有多个电性和位阻相近的取代基时,目前的不对称催化策略难以实现此类分子的制备。  在中科院战略性先导科技专项、国家自然科学基金、福建省自然

表面化学方法实现碳碳双键和三键碳纳米结构直接制备

相比于传统溶液化学,表面化学在原子级精准制备碳纳米结构方面展现出许多优势,其中最为广泛应用的是通过脱卤偶联反应实现新颖碳纳米结构的可控制备。然而截至到目前,表面化学反应用到的卤化物前驱体分子大多还局限在同一个碳原子上只修饰一个卤素原子的范畴。近期,许维教授课题组创新性地提出并设计了一系列前驱体分子,

分子蒸馏技术对高碳醇的精制的意义

  高碳脂肪醇是指二十碳以上的直链饱和醇,具有多种生理活性。最受关注的是二十八烷醇和三十烷醇,它们具有抗疲劳、降血脂、护肝、美容等功效,可做营养保健剂的添加剂,某些国家也作为降血脂药物,发展前景看好。  精制高碳醇,其工艺十分复杂,需要经过醇相皂化,多种及多次溶剂浸提,然后用多次柱层析分离,最后还要

12月18日《自然》杂志精选-形成碳碳键有简单路径

   形成碳—碳键的一条简单路径  这篇论文报告了一个新型碳—碳键形成反应的研究成功,该反应使得人们能够简单地生成以前要么不可能获得、要么难以获得的分子。该反应利用一种简单的铁催化剂和一种廉价的硅烷通过异原子取代的烯烃与缺电子烯烃之间的相互作用来形成高度取代的碳—碳键。作者介绍了超过60个

我国学者《Nature》发文:饱和碳偶联反应助力手性药物的开发

  在国家自然科学基金项目(批准号:21732006、51821006、51961135104、21927814)资助下,中国科学技术大学傅尧、陆熹研究团队在饱和碳偶联领域取得进展。相关研究成果以“钴催化对映选择性C(sp3)-C(sp3)偶联(Cobalt-catalysed enantiosel

碳碳键碳氢键在红外光谱中图中有谱线吗

C-C键一般较弱,不拿它来作为分析的对象。只有像芳香性的芳环的C-C键才会有用。饱和C-H键一般在2900-2800的位置出峰;不饱和C-H一般为3000-3100出峰,还是比较特征的。

甲醇制烯烃第一个碳碳键生成机制研究中获进展

  近日,中国科学院武汉物理与数学研究所研究员邓风和徐君团队在甲醇制烯烃反应机理研究中取得新进展,发现沸石分子筛的非骨架铝物种在第一个碳-碳(C-C)键生成过程中起到了关键作用,并揭示了相关的催化反应机理。研究结果在线发表在《德国应用化学》(Angew. Chem. Int. Ed.)杂志上。  乙

饱和碳偶联反应

  在国家自然科学基金项目(批准号:21732006、51821006、51961135104、21927814)资助下,中国科学技术大学傅尧、陆熹研究团队在饱和碳偶联领域取得进展。相关研究成果以“钴催化对映选择性C(sp3)-C(sp3)偶联(Cobalt-catalysed enantiosel

我国学者在饱和碳偶联反应方法学研究方面取得进展

图1 钴氢催化不对称偶联  在国家自然科学基金项目(批准号:21732006、51821006、51961135104、21927814)资助下,中国科学技术大学傅尧、陆熹研究团队在饱和碳偶联领域取得进展。相关研究成果以“钴催化对映选择性C(sp3)-C(sp3)偶联(Cobalt-catalyse

中科大最新Science:-分布裁剪碳氟键

  【引言】  氟既是电负性最大的元素,也具有极小的原子半径,从而使含氟化合物展现出诸多独特的性质。特别是在药物学或者农用化学领域的研究中,常常通过引入氟原子来改性碳基化合物的性质。因此,如何高效温和制备单氟和双氟有机物从而降低生产成本一直是基础研究和产业界的热点问题。  【成果简介】  近期,加州

廉价过渡金属催化领域的研究进展

  近日,南方科技大学理学院化学系副教授舒伟课题组围绕廉价金属催化的选择性合成等绿色精准催化主题进行了系统研究,取得了一系列进展,相关成果发表在Angewandte Chemie、Nature Communications以及ACS Catalysis等化学领域高水平期刊。  α-手性酰胺片段广泛存

我国学者在炔烃的手性有机酸催化方面取得进展

手性Brønsted酸活化炔基构筑手性螺环  在国家自然科学基金项目(批准号:92056104、21772161、21702182和21873081)的资助下,厦门大学叶龙武教授与浙江大学洪鑫研究员合作,在炔烃的手性有机酸催化方面取得重要进展。研究成果以“通过直接活化炔酰胺的手性布朗斯特酸催化不对称

手性有机酸催化炔烃

  在国家自然科学基金项目(批准号:92056104、21772161、21702182和21873081)的资助下,厦门大学叶龙武教授与浙江大学洪鑫研究员合作,在炔烃的手性有机酸催化方面取得重要进展。研究成果以“通过直接活化炔酰胺的手性布朗斯特酸催化不对称去芳构化反应(Asymmetric dea

聚集可调双发射手性碳纳米环研发成功

  中国科学技术大学杜平武教授课题组与杨上峰教授课题组合作,合成了首个具有聚集可调双发射性质的手性双环分子。研究成果近日发表于《自然-通讯》。  “这种新型手性分子在聚集态和溶液态可以发射不同波长的荧光,通过控制聚集程度,调节两个发射峰的比例,获得多种颜色的荧光发射。”化学与材料科学学院材料科学与工

如何定量检测一个生物大分子中的碳碳双键

生物大分子结构比较复杂,传统的鉴别碳碳双键的方法(比如Br2/CCl4)可能会产生误差。建议做IR分析,找出C=C的伸缩振动峰。

碳碳单键,碳碳双键在红外光谱中有振动吸收吗

有的。碳碳单键在1300-1500cm-1,双键在1600-1700

韦布首次探测到关键碳分子

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503737.shtm

韦布首次探测到关键碳分子

  一组国际科学家使用美国国家航空航天局的詹姆斯·韦布空间望远镜,首次在太空中探测到重要的碳化合物(CH_3^+),该分子也被称为“甲基阳离子”,其有助形成更复杂的碳基分子。碳化合物构成了所有已知生命的基础,因此,最新研究对于科学家进一步了解生命在地球上如何繁衍生息至关重要,也有望为系外生命搜索提供

碳分子筛是怎么制取的?

以煤为原料制取碳分子筛的方法有碳化法、气体活化法、碳沉积法和浸渍法。其中炭化法最为简单,但要制取高质量的碳分子筛必须综合使用这几种方法。

多氯代甾体天然产物合成研究中获进展

  含氯天然产物因其独特的生物活性受到有机合成化学家的关注,同时含氯甾体药物作为一类重要的合成甾体在临床上广泛应用,因此发展高效的合成策略实现含氯甾体分子的简洁、精准合成具有重要的研究意义。Clionastatins A和B是意大利科学家Fattorusso等于2004年在海洋穴居海绵Cliona

大连化物所晶相调控碳氧键活化研究取得进展

  近日,中科院大连化学物理研究所催化基础国家重点实验室理论催化课题组李微雪研究员和博士研究生刘进勋、苏海燕副研究员,在合成气转化结构敏感性研究方面再获进展:首次从理论上揭示出钴催化剂晶相结构对一氧化碳C=O键解离活性和解离路径起着决定性影响,并给出了清晰的微观机制,在此基础上预言了高比质量活性、稳

新策略拓展手性膦催化反应范围

  近日,中科院上海有机化学研究所赵刚课题组发展出双试剂手性离子对的催化策略。该策略基于廉价、易得的天然手性源,设计、合成了一系列新型手性有机催化剂,并将其应用于不对称催化类型的反应,取得优异的产率和对映选择性。相关研究发表于《自然—通讯》。  生命过程中酶催化的化学反应具有条件温和、立体专一性、催

合成低碳醇催化剂取得新突破

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505194.shtm近日,科技部重点研发计划“低质生物质气化合成混合醇燃料技术”项目中合成低碳醇催化剂技术取得新进展,中国科学院山西煤炭化学研究所联合青岛生物能源与过程研究所,完成百吨级/年合成气制低碳醇

手性季碳氨基酸不对称合成获进展

  2月18日,从中科院上海药物研究所徐明华课题组传来消息,该课题组自主设计的新型开链结构的简单磷—烯为手性配体,用于铑催化的硼酸对4-芳基-3-羰基-1,2,5-噻二唑类底物及其衍生物的不对称芳基化反应中,成功实现了含季碳手性的二芳基取代的系列1,2,5-噻二唑啉酮类化合物的高对映选择性合成,产物

碳青霉烯类的药物相互作用

  西司他丁与亚胺培南1︰1合用,可阻止亚胺培南肾内代谢并消除肾毒性。将倍他米隆以1︰1的比例与帕尼培南合用,可通过倍他米隆竞争性抑制帕尼培南向肾小管分泌,从而降低其在肾皮质的浓度,减轻帕尼培南的肾毒性。美洛培南对肾脱氢肽酶 I的稳定性比亚胺培南高4倍,不需与倍他米隆或酶抑制剂西司他丁合用。

低碳经济-催生碳金融

  两百年来,人类文明动力大都基于碳燃烧,从而改变了地球的大气结构。现在大气中二氧化碳的浓度是400PPM至450PPM,超过了临界值,致使世界各地恶劣气候频发,控制二氧化碳等温室气体排放成为亟待解决的全球性问题。   近些年来,世界各国一直为改变全球气候变暖而积极努力。《联合国气候变化公约》及《