遗传发育所玉米籽粒发育机制研究获进展

RNA编辑广泛存在于植物的线粒体和叶绿体中。RNA编辑作为一种RNA转录后加工机制,对于调控基因表达具有重要意义。RNA C-U的编辑是胞嘧啶(C)经过脱氨转变为尿嘧啶(U)的过程。在此过程中,PPR (pentatricopeptide repeat)结构域通常负责识别编辑位点,而DYW结构域则负责提供脱氨酶活性完成C-U的编辑。然而,E类和E+类PPR蛋白因缺失DYW结构域无法单独完成脱氨过程,需要分别通过招募脱氨酶PCW1(PPR motif, coiled-coil, and DYW domain-containing protein 1)和DYW2进行RNA编辑。目前,尽管在玉米中已有多个PPR蛋白被报道参与RNA的编辑过程,但仍有许多RNA编辑因子有待于进一步挖掘。 近日,中国科学院遗传与发育生物学研究所陈化榜研究组撰写的题为DEFECTIVE KERNEL 56 functions in mitochondr......阅读全文

科学家解析OsPPR9在水稻叶绿体发育中的作用

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500756.shtm近日,中国水稻研究所水稻生物育种全国重点实验室钱前院士课题组完成的研究论文在《农业科学学报》(英文) (Journal of Integrative Agriculture,JIA)

转录组的重编写:RNA编辑

  前 言   基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA

转录组的重编写:RNA编辑

  基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA的纠正,成为了

转录组的重编写:RNA编辑

前 言基因的功能探索是生命科学研究的永恒主题。近几年以CRISPR-Cas9技术的发展让直接在高等生物体内进行基因的功能研究成为可能。但除了DNA之外, DNA的转录产物--RNA在生命活动中也发挥着极其重要的作用,且与癌症等多种疾病的发生密切相关。因此,对RNA进行功能研究和错误RNA的纠

RNA-反转录

            实验材料 poly(A)+RNA 反转录酶 鼠源反转酶  或禽源反转录酶 试剂、试剂盒 oligo

RNA-反转录

 实验材料 poly(A)+RNA反转录酶鼠源反转酶 或禽源反转录酶试剂、试剂盒 oligo(dT)12-18 lmol LTris-Cl 1mol LTris-Cl lmol LKC1 25 mmol LMgCl2 dNTP 混合物 0.lmol LDTT RNasin实验步骤 一材料与设备1)p

RNA复制、转录与逆转录

转录是以DNA为模板合成RNA的过程,经过转录DNA分子中的贮存信息传递到RNA分子中,再由mRNA做为模板合成蛋白质分子。逆转录也是从RNA的一个特定位置开始的,以RNA分子中的一条链为模板,在逆转录酶的作用下,以四种脱氧核苷酸为原料,合成方向仍是5'→3',完成cDNA的合成。大

RNA的转录和逆转录

转录是以DNA为模板合成RNA的过程,经过转录DNA分子中的贮存信息传递到RNA分子中,再由mRNA做为模板合成蛋白质分子。逆转录也是从RNA的一个特定位置开始的,以RNA分子中的一条链为模板,在逆转录酶的作用下,以四种脱氧核苷酸为原料,合成方向仍是5'→3',完成cDNA的合成。大

真核生物RNA的转录与原核生物RNA的转录过程差异

⒈ 真核生物RNA的转录有的是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。且真核生物线粒体和叶绿体的遗传信息系统被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、 RNA)、核糖体、氨基酸活化酶等。说明

真核生物RNA的转录与原核生物RNA的转录过程的区别

⒈ 真核生物RNA的转录有的是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。且真核生物线粒体和叶绿体的遗传信息系统被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、 RNA)、核糖体、氨基酸活化酶等。说明

什么是RNA编辑?

RNA编辑(RNA editing)是指转录后的RNA在编码区发生碱基的加入、丢失或转换等现象。RNA编辑产生的“基因”可称为隐蔽基因( cryptogene),其产物的结构不能从基因组DNA序列中推导获得。早在1986年发现锥虫线粒体mRNA转录加工后,其mRNA的多个编码位置上加入或丢失尿苷酸。

RNA编辑主要类型

①简单编辑,单碱基转变的转录后调节;②插入编辑,插入单个核苷酸或少量核苷酸的丢失,其机制是转录链的跳格;③泛编辑,插入或缺失多个尿嘧啶核苷酸或转录后插入多个胞嘧啶,其机制是编辑序列由外源反义引导RNA( gRNA)提供,gRNA在编辑体(editosome)核蛋白颗粒中与前编辑mRNA配对,鉴别作为

RNA-大量转录合成

            实验材料 模板 DNA 或质粒 试剂、试剂盒 TE   TE 饱和酚   氯仿

RNA-大量转录合成

实验材料 模板 DNA 或质粒试剂、试剂盒 TE TE 饱和酚 氯仿异内醇 3mol LNaAc 无水乙醇 5X 转录缓冲液 lOOmmoL LDTT RNasin rATPrGTPrUTPrCTP SF6T3 或 T7RNA 聚合酶 异戊醇 DNase 7.5mol L 乙酸铵 无水乙醇 乙醇实验

3.5-RNA-反转录

利用 RNA 模板通过反转录获得 DNA,进而复制和感染细胞实验材料poly(A)+RNA反转录酶鼠源反转酶 或禽源反转录酶试剂、试剂盒oligo(dT)12-18lmol LTris-Cl1mol LTris-Cllmol LKC125 mmol LMgCl2dNTP 混合物0.lmol LDTT

RNA-标准转录反应

            实验材料 模板 DNA 或质粒 试剂、试剂盒 TE 异丙醇 3mol LNaAc

RNA-标准转录反应

实验材料 模板 DNA 或质粒试剂、试剂盒 TE 异丙醇 3mol LNaAc 无水乙醇 5×转录缓冲液 l00 mmol L DTT RNasin rATPrGTPrUTP 各 2.5 mmol L [α42P] rCTP SPGT3 或 T7RNA 聚合酶 TE-饱和的酚氯仿异戊醇 DN

真核生物RNA的转录与原核生物RNA的转录的区别

  真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同:  1、真核生物RNA的转录有的是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。且真核生物线粒体和叶绿体的遗传信息系统被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是

殷平教授Nature子刊解析植物RNA编辑的分子机制

  早在1989年研究人员就在植物中发现了RNA编辑的现象。2005年,第一个参与RNA编辑的蛋白因子被鉴定出来,发现它是一个PLS-type的PPR蛋白。近期来自华中农业大学作物遗传改良国家重点实验室的研究人员报道了RNA编辑关键因子MORF蛋白可以和PLS-type PPR蛋白相互作用形成复报道

研究发现水稻调控细胞死亡及逆境胁迫因子

近日,中国农业大学教授彭友良、赵文生团队在《植物生物技术杂志》在线发表研究论文。该研究鉴定并分析了一个水稻自然叶枯突变体nbl3,揭示了一个PPR蛋白OsNBL3是调控水稻细胞死亡及生物和非生物胁迫的重要因子。 Pentatricopeptide repeat(PPR)蛋白是一类由核基因编码且多

概述RNA编辑的现象

  RNA编辑(RNA editing)是新发现的在mRNA水平上遗传信息改变的过程。由于RNA编辑使mRNA中的编码序列与它的基因中的编码序列不一致。研究证明,mRNA中个别碱基的取代和加减,造成mRNA的碱基序列与它的基因的碱基序列不一致,使其仍能参与翻译,所有这一系列的改变不是发生在基因水平上

RNA编辑领域前世今生

  提到基因编辑,我们可能首先想到的是著名学者张锋和Jennifer Doudna博士共同发现的CRISPR基因编辑系统。而提到单碱基编辑系统,我们可能首先会想到Broad研究所著名科学家David Liu和张锋博士等人共同创建的Beam Therapeutics公司,这家初创公司致力于使用基于CR

简述RNA编辑的机制

  编辑一般发生在mRNA的3’端而不在5’端,1988年Kenneth等首次报道了编辑在3'端的现象。他们合成了2种编辑引物和2种未编辑引物。完全编辑的成熟RNA仅能同编辑引物杂交,用PCR检测到了杂交带,它不能杂交到未编辑mRNA上。相反,未编辑RNA仅能同未编辑引物反应。如果编辑是从转

简述RNA编辑的意义

  RNA编辑的生物学意义主要有:  ①校正作用,因4个核苷酸的插入移码,使其肽链的序列和其他生物的相似;  ②调控翻译,通过编辑可以引入或去除起始密码子或终止密码子;  ③扩充遗传信息,经编辑后增加了肽链的编码信息量

3.1.2-RNA-大量转录合成

RNA 标准转录体系的一般回收率为 lugRNA/ug 质粒 DNA, 使用下面的方法,可以提高回收率至 5〜l0ug RNA/ug 质粒 DNA。大量制备 RNA 可以用于体外翻译。实验材料模板 DNA 或质粒试剂、试剂盒TETE 饱和酚氯仿异内醇3mol LNaAc无水乙醇5X 转录缓冲液lOO

3.1.1-RNA-标准转录反应

利用 DNA 聚合酶 I 的大片段(Klenow 酶)的 3'— 5'外切酶活性将 3'黏性末端转化成平末端。具体方法是在体外转录体系尚未加入核苷酸和 RNA 聚合酶时,加入 Klenoow 片段 (终浓度为 5U/ug),于 22℃ 孵育 15mim, 然后再加入核苷酸混合物和RNA 聚合酶实验材

RNA转录的技术特点

转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA聚合酶作为催化剂,合成前体

信使RNA转录的调控

  一、遗传信息的表达有时序调控和适应调控,转录水平的调控是关键环节,因为这是表达的第一步。转录调控主要发生在起始和终止阶段。  二、操纵子是细菌基因表达和调控的单位,有正调节和负调节因子。阻遏蛋白的作用属于负调控。环腺苷酸通过其受体蛋白(CRP)促进转录,可促进许多诱导酶的合成。操纵子可构成综合性

叶绿体和线粒体基因组变异检测获突破

  近日,《公共科学图书馆―综合》发表了中国农业科学院油料作物研究所博士后曾长立与合作导师伍晓明研究建立的能高通量检测叶绿体和线粒体基因组遗传变异的新方法。   据曾长立介绍,叶绿体和线粒体基因组作为植物细胞质基因组,对光合作用、呼吸作用等重要生命过程具有重要意义。   研究叶绿体和线粒体基因组

关于半自主性细胞器的组成介绍

  线粒体和叶绿体中有DNA和RNA、核糖体、氨基酸、活化酶等。这两种细胞器均有自我繁殖所必需的基本组分,具有独立进行转录和转译的功能。迄今为止,已知线粒体基因组仅能编码约20种线粒体膜和基质蛋白并在线粒体核糖体上合成;线粒体和叶绿体的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成,然后转移至线