精准制造:从微纳米迈向原子尺度

“空天海地的网络建设,信息世界感知力、通信力以及智算力的建设,迫切需要高端、新型的硅基芯片。然而‘自上而下’的光刻技术制造方式已经接近物理极限。”在日前举行的香山科学会议上,中国科学院院士许宁生说,全球精准制造的竞争已从微纳米尺度迈向原子尺度,未来硅基芯片的发展水平将取决于大规模原子制造技术水平。 此次香山科学会议聚焦原子制造前沿科学问题。1纳米技术节点被视为硅基芯片制造加工技术的物理极限。晶体中相邻原子的距离大约几个埃(0.1纳米),如果能通过直接操控原子来制造芯片,将颠覆以现有光刻技术为基础的制造规则。 从石器时代走来,人类的制造技艺不断精进,正在走进能精准操控物质最基本单元——原子的时代。与会专家认为,在这个过程中,人类不仅将突破诸多制造极限,也将刷新对基础理论的认知。 有望突破芯片制造极限 当前的芯片制造采用“自上而下”的制造方式。这指的是一种从整块材料开始,通过逐层添加、移除或改变材料性质来构建复杂结构的方......阅读全文

纳米尺度富勒烯电子器件可自行制冷

  近日,美国伊利诺伊大学研究人员宣布,他们用原子力显微镜探针检测了与富勒烯(石墨单原子层)接触点的热电效应,首次发现富勒烯晶体管在纳米尺度具有自行制冷效应,能降低自身温度。该研究成果发表在4月3日网络版的《自然·纳米技术》杂志上。   计算机芯片的速度和尺寸大小受制于散热效果。电流通过设备材料由

美研制出迄今最小三维晶体管-效率更高-尺寸仅2.5纳米

  美国研究人员研制出一种新的三维晶体管,尺寸不到当今最小商业晶体管的一半。他们为此开发了一种新颖的微加工技术,可以逐个原子地修改半导体材料。  为了跟上“摩尔定律”的步伐,研究人员一直在寻找将尽可能多的晶体管塞入微芯片的方法。最新的趋势是垂直竖立的鳍式三维晶体管,其尺寸约为7纳米,比人类头发还要薄

福尔曼:与原子对话的人

以色列本古里安大学纳米尺度系统实验室罗恩·福尔曼教授。   “如果用一句话来概括我们的工作,就是与原子对话。”这是以色列本古里安大学纳米尺度系统实验室原子芯片组罗恩·福尔曼教授在接受科技日报记者采访时,对他领导的科研小组所做工作的概述。   福尔曼教授现在是炙手可热的原子芯片研究领域的国际领军人物,

详解芯片的设计生产流程(三)

分层施工,逐层架构知道 IC 的构造后,接下来要介绍该如何制作。试想一下,如果要以油漆喷罐做精细作图时,我们需先割出图形的遮盖板,盖在纸上。接着再将油漆均匀地喷在纸上,待油漆乾后,再将遮板拿开。不断的重复这个步骤后,便可完成整齐且复杂的图形。制造 IC 就是以类似的方式,藉由遮盖

一文读懂IC设计/晶圆/纳米制程/封装都是啥?(二)

  纳米制程是什么?  三星以及台积电在先进半导体制程打得相当火热,彼此都想要在晶圆代工中抢得先机以争取订单,几乎成了 14 纳米与 16 纳米之争,然而 14 纳米与 16 纳米这两个数字的究竟意义为何,指的又是哪个部位?而在缩小制程后又将来带来什么好处与难题?以下我们将就纳米制程

众学者齐聚南京分享新仪器与新技术

  分析测试百科网讯 2016年12月17日-19日,2016年全国生命分析化学学术大会在南京国际展览中心召开。在新仪器与新技术分会上,中科院大连物化所仪器分析化学研究室主任关亚风、清华大学化学系教授何彦、浙江大学化学系教授方群等10余位近期开发了新仪器和新技术的专家学者为在场参会代表带来精彩报告。

组织芯片

组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载体(使用载玻片最多)上,进行同一指标的原位组织学研究。该技术自1998年问世以来,以其大规模、高通量、标准化等优点得到大范围

我国科学家开发出面向新型芯片的绝缘材料

作为组成芯片的基本元件,晶体管的尺寸随着芯片缩小不断接近物理极限,其中发挥着绝缘作用的栅介质材料十分关键。中国科学院上海微系统与信息技术研究所研究员狄增峰团队开发出面向二维集成电路的单晶氧化铝栅介质材料——人造蓝宝石,这种材料具有卓越的绝缘性能,即使在厚度仅为1纳米时,也能有效阻止电流泄漏。相关成果

量子计算技术再获神器-科学家开发出新的成像技术

  最近,《Science》子刊《Science Advances》上发表的一篇论文称,研究团队开发了一种能够窥探硅晶体内部结构的非侵入性成像技术。这很有可能成为测试常规硅基芯片的有效方法,且可能为下一代的量子计算技术奠定基础。  这支来自奥地利林茨大学、伦敦大学学院、苏黎世联邦理工学院和瑞士洛桑联

压电纳米定位产品在原子力显微镜中的应用举例

以下为两个简单案例:图1中,芯明天公司提供的产品为压电陶瓷、Z轴压电物镜定位系统及XY轴二维压电纳米定位台。设备原理为:原子力探针的针尖端部置于干涉显微镜的光轴上,产生干涉条纹由CCD接收,当XY二维压电纳米定位台带动样件移动时,表面高度变化,引起原子力探针变化,其变化量由白光干涉条纹计量。当原子力

国家纳米中心在单原子酶用于肿瘤催化治疗方面取得进展

近日,中国科学院国家纳米科学中心研究员陈春英团队和研究员杨蓉团队在单原子纳米酶用于肿瘤催化治疗方面取得进展。相关研究成果以Tumor-Microenvironment- Responsive Cascade Reactions by a Cobalt-Single-Atom Nanozyme for

原子力显微镜作为纳米技术分析工具有哪些特点

原子力显微镜以独特的方式将先进技术与高时效操作相结合,高度自动化被植入到每一级操作中,使这款 AFM 成为广大科研和工业用户理想的纳米技术分析工具。以下为Tosca系列产品的几大特点介绍:  自动激光对准 Tosca 系列提供完全自动化的激光对准功能:在压电陶瓷驱动器中安装好悬臂梁后,用户只需在控制

华理团队开发单原子和纳米颗粒接力催化新方法

华东理工大学化工学院、化学工程联合国家重点实验室教授周兴贵、段学志,特聘研究员陈文尧等针对单原子催化剂在反应过程中易中毒失活问题,提出了金属纳米颗粒作为“解药”的策略,实现了单原子金(Au)与纳米颗粒Au(Au NPs)间的接力催化,显著提升了丙烯氢氧环氧化制环氧丙烷反应性能。相关研究发表于《自然—

捷克科学家率先研发纳米晶体中定位氢原子的方法

  捷克科学院物理研究所的科学家们通过使用动态精化与电子衍射数据采集的方法,成功定位了微米级以下有机或无机单晶材料中的氢原子。这是世界上首次取得如此精准级别的定位方法,该研究成果发表在了2017年1月的《科学》学术期刊上。   晶体学是化学和新材料科学等许多科学分支的基础研究领域。捷克科学家历时七年

纳米测量和成像完美工具:Nanite原子力显微镜系统

Nanite原子力显微镜系统是纳米丈量和成像的完满东西。该系统供给三维数据。原子力显微镜丈量性的,无需制备样品。此外,机械活动平台答应批量的,预编程丈量,利用大型花岗岩主动X/Y/Z样品台可测试尺寸达180mm样品的分歧区域,用户以至能够定制更大的挪动样品台。Nanite设想矫捷、操作简单,是您抱负

新型“触发器”量子比特问世

澳大利亚研究人员最近展示了一种新型量子比特的操作,称为“触发器”量子比特,它结合了单个原子的精巧量子特性和普通电脑芯片电信号的易控性。研究成果发表在《科学进展》上。新南威尔士大学研究团队在世界上率先证明,电子的自旋以及硅中单个磷原子的核自旋可用作量子比特。虽然两个量子比特本身都表现得非常好,但它们的

生物芯片与与电子芯片的比较

生物芯片和电子芯片有什么区别呢?其实电子芯片和生物芯片有着既远又近的关系。“它们相同的地方在于,都用很小的元件,储藏很大的信息量,输入输出也很大。”杨洪波说。所谓的生物芯片输出,就是在平方厘米大的芯片上,用特制的扫描仪扫出1百万个化学分子的反应信号,“一行一行地扫,小到0.5微米的地方也全部会被扫到

生物芯片技术的芯片制备方法

包括原位合成和预合成后点样。原位合成:适用于寡核苷酸,通过光引导蚀刻技术。已有P53、P450,BRCAI/BRCA2 等基因突变的基因芯片。预合成后点样:是将提取或合成好的多肽、蛋白、寡核苷酸、cDNA、基因组DAN等通过特定的高速点样机器人直接点在芯片上。该技术优点在于相对简易低廉,被国内外广泛

组织芯片的制备——石蜡块组织芯片

实验方法原理首先制作模具蜡块(受体,recipient)。从供体蜡块(donor)上取样,取样针分别有 0.6 mm、1.0 mm、1.5 mm 和 2.0 mm 几种,在 1 个大小 45 mm×20 mm 的模具蜡块上,以 0.6 mm 取样针间隔 0.1 mm,可排列 1000 余个位点,如取

关于原位芯片你需要知道的

原位芯片也叫原位合成芯片,原位芯片的主要材质是硅,表层覆盖纳米级氮化硅薄膜。电子级的氮化硅薄膜实际上是一种硅氮化合物,常用作微电子技术电绝缘层,通过化学气相沉积或者等离子体增强化学气相沉积技术制造的。而选择氮化硅薄膜的理由是因为它作为集成电路芯片最外层钝化膜和保护膜有优势。氮化硅硬度大,耐磨耐划,致

3分钟了解原位芯片

   原位芯片也叫原位合成芯片,原位芯片的主要材质是硅,表层覆盖纳米级氮化硅薄膜。电子级的氮化硅薄膜实际上是一种硅氮化合物,常用作微电子技术电绝缘层,通过化学气相沉积或者等离子体增强化学气相沉积技术制造的。而选择氮化硅薄膜的理由是因为它作为集成电路芯片外层钝化膜和保护膜有优势。氮化硅硬度大,耐磨耐划

樊春海谈DNA纳米基因芯片:体现了现代科技的交叉性

  DNA纳米技术是利用DNA的分子性质,构建出可操控的新型纳米尺度聚集体或超分子结构。此时,DNA的作用不再是遗传物质,而是作为结构模板,或是作为计算工具。前不久,中科院院士贺林、中科院上海应用物理研究所研究员樊春海等人便利用DNA纳米技术,开发出了DNA纳米基因芯片,可以用来检测疾病,并大大提高

2024上海国际芯片展会人工智能芯片展会显示芯片展会

展会名称:2024中国(上海)国际半导体展览会英文名称:China (shanghai) int'l Circuit board & Electronic assembly Show 2024展会时间:2024年11月18-20日 论坛时间:2024年11月18-19日 展会地点:上海新国际

我科学家开发出面向低功耗芯片的绝缘材料

中国科学院上海微系统与信息技术研究所狄增峰研究员团队研发出面向二维集成电路的单晶氧化铝栅介质材料——人造蓝宝石。这种材料具有卓越的绝缘性能,未来可用于开发低功耗芯片。相关成果7日发表在国际学术期刊《自然》上。二维集成电路采用厚度仅为1个或几个原子层的二维半导体材料构建,是下一代集成电路芯片的理想沟道

又一突破,我国科学家首创晶体制备新方法

  从“盖房子”到“顶竹笋”:我国科学家首创晶体制备新方法。  晶体是计算机、通讯、航空、激光技术等领域的关键材料。传统制备大尺寸晶体的方法,通常是在晶体小颗粒表面“自下而上”层层堆砌原子,好像“盖房子”,从地基逐层“砌砖”,最终搭建成“屋”。  北京大学科研团队在国际上首创出一种全新的晶体制备方法

捕获原子充当晶体管,新型纳米光子电路显示量子网络潜力

美国普渡大学团队将碱金属原子(铯)捕获在集成光子电路中,可充当光子(光的最小能量单位)的晶体管。这些被“捉”到的原子,首次展示了冷原子集成纳米光子电路构建量子网络的潜力。研究成果发表在最新一期《物理评论X》上。新开发的技术利用激光冷却并捕获了集成纳米光子电路中的原子。光在一条细小的光子“线”(比人类

美用迄今最薄半导体造出新型纳米激光器

  美国科学家们利用迄今最纤薄(仅为三个原子厚)的半导体,制造出一种新型纳米激光器,其不仅能效更高,容易制造且可与目前的电子设备兼容。研究人员表示,这一研究成果为最终制造出用光而非电子传输信息的下一代计算设备奠定了坚实的基础。   从医疗到金属切割再到电子产品,激光器都在其中扮演重要角色,但为了满足

7个原子大小的电子开关问世

  澳大利亚科学家本周展示了一款7个原子大小的电子开关。研究人员表示,这种电子开关将大大缩小微型芯片的尺寸并让计算速度呈“指数级”变化,它的出现也意味着人们朝制造出量子计算机的目标又前进了一步。   新南威尔士大学量子计算技术中心和美国美国威斯康星大学麦迪逊分校的研究人员使用扫描探

扫描探针显微镜的应用领域

扫描探针显微镜用于单原子操纵:  1959年美国物理学会年会上,诺贝尔物理奖获得者Richard说:“如果我们能够按自己的意愿排列原子,将会出现何物?这些物质的性质如何?虽然这个问题我们现在不能回答,但我决不怀疑我们能在如此小的尺寸上操纵原子。”目前,Richard的设想可以实现了。  使用扫描隧道

单原子存储和单分子逻辑开关技术获突破

《科学》:超高密度存储设备及分子级计算机指日可待  美国IBM公司在最新一期《科学》杂志上发表了两份研究报告,公布了其在单原子存储技术和单分子逻辑开关研究方面取得的技术突破。这是纳米技术领域两项最新的重大科学成就。 在第一份报告中,IBM科学家描述了在测量单个原子的磁各向异性特性方面取得的重大进展。