研究开发出植物高效精准大片段DNA操纵及染色体编辑技术
基因组结构变异(SV)是植物遗传多样性的重要来源,也是基因组进化和优异农艺性状形成的重要驱动力。因此,探究如何高效精准地操纵植物基因组结构变异对植物性状改良和农业生物育种具有重要意义。目前,基于CRISPR/Cas的基因组编辑技术在植物性状改良中得到广泛应用。而这些技术的编辑尺度大部分情况下局限于少数几个核苷酸的替换、删除和插入。尽管CRISPR/Cas9结合双sgRNAs能够在植物中实现基因组大片段DNA的删除和倒位等操纵,但效率较低。同时,由于该策略依赖于DNA双链断裂(DSBs)产生,编辑产物常常引入较多非预期的编辑,甚至导致复杂的染色体重排。因此,开发不依赖于DSBs、高效且精准的植物大片段DNA和染色体操纵技术,对植物遗传改良具有重要意义,是植物染色体工程和生物育种技术创新的迫切需求。近日,中国科学院遗传与发育生物学研究所王延鹏研究组与中国农业大学小麦研究中心科研人员合作,开发了高效且精准的植物基因组大片段DNA操纵技......阅读全文
大肠杆菌乳糖操纵子的基团介绍
大肠杆菌乳糖操纵子包括4类基因: ①结构基因,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。lacZ合成β—半乳糖苷酶,lacY合成β—半乳糖苷透过酶,lacA合成β—半乳糖苷乙酰基转移酶。
硬实力!杨辉团队Cell,Nature系列子刊等发表8项研究成果
近一年来中国科学院神经研究所杨辉团队连续取得突破,在Cell, Protein & Cell,Nature Communications ,Nature Cell Biology,Nature Protocol,Nature Methods 等杂志上发表了8项重要研究成果,在基因编辑领域取得重大
下一代转基因工具:表观遗传调控
2015年,加州大学圣地亚哥分校的生物学家Ethan Bier和Valentino Gantz提出了一项突破性技术,这种名为“活跃遗传(active genetics)”的新技术打破了父母向后代传递遗传性状的几率(超越孟德尔式遗传)。 今年2月,他们和Shannon Xu在《eLife》发表文
我国科学家在CRISPR研究中获突破性进展
作为生命的基本遗传物质,DNA的精准编辑和快速检测一直以来都受到高度的重视。近年来,随着CRISPR/Cas9系统的发现和开发,人们对基因治疗重新燃起了新希望;尽管存在一些潜在的安全风险和一定的伦理之争,CRISPR/Cas9系统出于其相对精准和高效,已经开始被应用于临床的研究。与此同时,科学家
什么是染色体畸变呢?染色体畸变有几种?
染色体畸变包括数目畸变和结构畸变两类。这些畸变可发生于常染色体,也可发生于性染色体。以二倍体为标准,染色体出现单条、多条或成倍增减称为染色体数目畸变,其畸变类型有整倍体和非整倍体。结构畸变是指染色体出现各种结构的异常,主要的畸变包括断裂、缺失、重复、易位、倒位、等臂染色体、环状染色体、双着丝粒染色体
关于非同源染色体的染色体组的介绍
细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部遗传信息,这样的一组染色体,叫做一个染色体组。 由于染色技术的发展,在染色体长度、着丝点位置、长短臂比、随体有无等特点的基础上,可以进一步根据染色的显带表现区分出各对同源染色体,并予以分类和编
关于染色体畸变试验—染色体分析的基本介绍
观察染色体形态结构和数目改变称为染色体分析。在国外常称为细胞遗传学检验,但这一名称有时广义地包括微核试验和SCE试验,因为这两个试验同样也是在显微镜下观察细胞染色体的改变。 对于结构畸变,一般只观察到裂隙、断裂、断片、微小体、染色体环、粉碎、双或多着丝粒染色体和射体。对于缺失,除染色单体缺失外
分子生物学实验基础知识
分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也
“基因魔剪”编辑基因更安全、更有效
10年前,我们看到了现代生物学的突破。 一位美国科学家发现,对Cas9蛋白的操纵产生了一种几乎可在科幻电影里展现的基因技术:CRISPR。把它想象成一把“分子剪刀”,它能够切割和编辑人类、动物、植物、细菌甚至病毒的DNA。它的潜力巨大、用途广泛,涵盖了从遗传性疾病的消除到能够抵御气候变化作
CRISPR基因编辑技术开启五大门派
只要出现一篇关于CRISPR-Cas9的报道,Addgene的员工就会立刻找到它。这家非营利公司是论文作者经常储存研究中使用的分子工具的地方,也是其他科学家立即获取这些分子工具的地方,还是一些科学家可以即刻得到相关试剂的地方。“一篇热门论文发表之后,我们几分钟后就会接到电话。”这家美国马萨诸塞州
科学家改进基因编辑技术CRISPR-有望加速细胞基因组编辑
CRISPR作为一种强大的基因编辑工具,其能够帮助科学家们以惊人的精确度对DNA进行修剪,但追踪这些改变对基因功能的影响常常比较耗时,研究人员当前仅能一次对一种编辑进行分析,而这个过程需要花费数周时间。图片来源:www.phys.org 近日,一项刊登在国际杂志Nature Genetics上
构建双重检查碱基编辑系统提高ABE在大肠杆菌中编辑效率
近年来,CRISPR/Cas9的新型碱基编辑技术迅速发展。David Liu实验室通过将催化失活的Cas9蛋白与胞嘧啶脱氨酶融合在一起,利用具有序列特异性的gRNA引导复合物靶向目标基因,实现了由C到T的单碱基转换;随后该实验室又建立了腺嘌呤碱基编辑器(ABE),实现了由A到G的精确转换。但是可
电转仪助力CRISPR编辑iPSC新进展:首次报告协同基因编辑...
电转仪助力CRISPR编辑iPSC新进展:首次报告协同基因编辑效应 2006年,日本科学家山中伸弥(Shinya Yamanaka)教授利用逆转录病毒将4个转录因子转入成体细胞,将其转变为诱导多能干细胞(induced pluripotent stem cells, iPSC)。从此后,
Science等两篇论文实现CRISPR多基因编辑与多重基因编辑
12月,首先是Braod研究院的研究人员在CRISPR–Cpf1的基础上打造了一个多重化基因编辑系统,其后,来自中科院动物所的研究人员也在CART细胞中实现多基因编辑。这两项成果分别公布在Science和Cell Research杂志上。 CRISPRs和CRISPR相关蛋白(Cas)蛋白的新
基于碱基编辑的全基因组扰动文库构建与筛选技术
通过全基因组规模扰动文库的构建与筛选,从宏观基因组层面系统研究基因型与表型的对应关系,是微生物功能基因组学研究的重要方法。相较于单个基因扰动文库的构建与筛选,混合文库的构建与筛选可通过一次实验实现特定条件下对上千个基因的同时筛选,显著提高通量。近年来,CRISPR/Cas技术凭借着精简高效、可编
私自进行基因编辑,最惨或被监禁3年!
当今基因编辑被热议,甚至被说得神乎其神、“术”到病除。 2月15日,美国率先公布在伦理上支持编辑人类胚胎DNA。 不久之前,DNA操纵技术还仅掌握在昂贵的学术与商业实验室手中。但研究设备和DNA样本正变得越来越普遍、价格约越来越低廉,在网上只需两三百美元便可买到全套装备。 这样一来,即使是
单个DNA分子动力研究获进展
无论是在病毒还是在细胞中,DNA皆以紧密压缩的结构存在。比如,在真核细胞中,DNA缠绕在组蛋白周围形成核小体,并进一步凝聚成大家熟知的染色体结构。在哺乳动物精子中,DNA凝聚成更致密的面包圈状(toroid)结构。了解DNA这些紧密排列的结构,并分析它们形成的动力学过程,对认识DNA复制甚至繁殖
Science子刊:用CRISPR攻克致命感染
Whitehead研究所的研究人员改进了CRISPR-Cas基因组编辑系统,使其能够全面操纵白色念珠菌(Candida albicans)的基因组,这一技术将帮助人们找到更多的新治疗靶标。 “这项研究是很有意义的,”领导这项研究的Gerald Fink教授说。“之前我们对这种致病菌的攻击策略并
CRISPR技术如何带火了基因编辑小鼠?
2013年,一种名为的“CRISPR”的基因编辑技术出现后,“基因编辑”这个词汇不经意间火了,传遍了整个学术圈、生活圈,甚至是朋友圈。它的出现让“编辑生命”变得触手可及,它似乎可以斗过癌症(白血病)和艾滋病,还有各种遗传病。我们知道,目前这些人类疾病都没有办法从根本上治疗,而它们几乎都和基因突变相关
CRISPR/Ca9-应用及前沿研究
CRISPR:细菌体内一串规律成簇的间隔短回文重复 (Clustered Regularly Interspaced Short Palindromic Repeats)DNA 序列,是大多数细菌及古细菌中一种获得性免疫系统。现在使用的 CRISPR/Cas 9 系统是由最简单的 type
科学家建立食气梭菌大片段基因簇染色体表达新技术
2019年1月8日,国际学术期刊Metabolic Engineering 在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所姜卫红研究组题为Phage serine integrase-mediated genome engineering for efficient expre
关于转座因子的发现历史介绍
在50年代以前,人们对于基因的认识一般是每一个基因组的DNA的量是固定的,它包括数目固定,位置固定、功能固定的一系列基因,以保持生物性状能稳定地遗传下去。但同时,基因也会发生突变。一般自发突变的频率是很低的,当然也存在着高突变频率的现象,这说明在基因组中存在高度不稳定的基因,很长时间人们忽视了这
CRISPR/Cas9抗体—CRISPR/Cas9研究
能够方便而精确的对DNA和核苷酸序列进行编辑,是科研工作者们长期以来的梦想。CRISPR/Cas9系统的诞生和成熟标志这这一梦想逐渐变为现实。CRISPR/Cas9系统,作为第三代基因编辑技术,它的本质其实是细菌中一种对付诸如病毒等外来DNA的防御系统。此系统的工作原理是 成簇的、规律间隔的短回
美媒称科学家发现植物培育新技术:红瓤苹果即将问世
美媒称,来自新西兰植物与食品研究所的科学家说,由于采用新的植物培育技术来模仿自然界发生的DNA变异,消费者或许很快就能在超市中看到红瓤苹果和其他奇特的水果品种。 据美国《新闻周刊》网站7月19日报道,这种技术可以让人们轻松控制水果和蔬菜的外观、手感、味道以及营养成分,从而迅速制造出质量更高的产
l噬菌体介导的局限性转导
一、原理大肠杆菌l噬菌体的DNA,既可以自主存在于宿主菌中,也可以整合在细菌染色体中,完成溶源化过程。多数温和噬菌体整合进细菌染色体中时都有一特定的位置。大肠杆菌l噬菌体的原噬菌体附着在寄主染色体半乳糖操纵子基因gall被诱导出来时,大约106个l噬菌体中有一个被反常切除,而携带半乳糖或生物素基因脱
Nature:构造酵母染色体
合成生物学的目标之一就是构建那些复杂的人工合成有机体。目前,在酵母细胞中已经取得了阶段性的进展——采用分段式方法,研究者已经可以将整个酵母染色体转化成为合成序列了。 生物细胞其实很像是一台计算机——基因组可以比作软件,它负责对细胞的构成进行编码,细胞器则犹如计算机的硬件,负责读取并运行软件的
三篇Nature文章揭示CRISPR/Cas9基因组编辑取得重大进展
大多数人类遗传病是由于点突变---DNA序列上的单个碱基错误---导致的。然而,当前的基因组编辑方法不能够高效地校正细胞中的这些突变,而且经常导致随机的核苷酸插入或删除(insertions or deletion, indel)。 如今,在一项新的研究中,来自美国哈佛大学的研究人员对CRIS
染色体的组成
染色体组型(Karyotype):描述一个生物体内所有染色体的大 小、形状和数量信息的图象。这种组型技术可用来寻找染色体歧变同特定疾病的关系,比如:染色体数目的异常增加、形状发生异常变化等。以染色体的数目和形态来表示染色体组的特性,称为染色体组型。虽然染色体组型一般是以处于体细胞有丝分裂中期的
染色体是什么
是细胞在有丝分裂或减数分裂时DNA存在的特定形式。细胞核内,DNA 紧密卷绕在称为组蛋白的蛋白质周围并被包装成一个线状结构。当细胞不分裂时,染色体在细胞核中是不可见的——在显微镜下也是如此。然而,构成染色体的 DNA 在细胞分裂过程中变得更紧密,染色体在显微镜下可见。每条染色体都有一个叫做着丝粒(点
什么是染色体
人类基因组是由23对染色体(共46个)所构成,每一个染色体皆含有数百个基因,在基因与基因之间,会有一段可能含有调控序列和非编码DNA的基因间区段。人类拥有24种不同的染色体,其中有22个属于体染色体,另外还有两个能够决定性别的性染色体,分别是X染色体与Y染色体。1号到22号染色体的编号顺序,大致符合