我国学者在大脑动态“充电供能”的神经机制研究方面取得进展

图 神经活动-线粒体基因转录偶联随着衰老变化示意图 在国家自然科学基金项目(批准号:81930030、82230036)等资助下,浙江大学马欢教授团队在大脑动态“充电供能”的神经可塑性机制研究方面取得进展。研究成果以“促进神经活动-线粒体DNA转录偶联改善老年小鼠认知(Boosting neuronal activity-driven mitochondrial DNA transcription improves cognition in aged mice)”为题,于2024年12月20日在《科学》(Science)杂志发表,论文链接https://www.science.org/doi/10.1126/science.adp6547。 作为主导思维与意识的核心器官,大脑高效低耗的特性是人工智能技术争相模仿的目标,也是当前人类科技尚未企及的巅峰。同时,大脑能量调控与人类健康密切相关,其失衡被认为是神经系统疾病的关键风险因......阅读全文

我国学者在大脑动态“充电供能”的神经机制研究方面取得进展

图 神经活动-线粒体基因转录偶联随着衰老变化示意图  在国家自然科学基金项目(批准号:81930030、82230036)等资助下,浙江大学马欢教授团队在大脑动态“充电供能”的神经可塑性机制研究方面取得进展。研究成果以“促进神经活动-线粒体DNA转录偶联改善老年小鼠认知(Boosting neuro

Nature:神经退变和脑衰老过程中神经元DNA修复新机制

近期,Nature 发表了题为:A NPAS4‐NuA4 Complex Couples Synaptic Activity to DNA Repair 的研究论文【1】,揭示了神经元在外部刺激下维持基因组稳定性的一种新机制,从而为开发改善神经退行性疾病和脑衰老的治疗策略提供了新的选择。基于此,Br

Cell:-衰老与神经退化之间的分子机制

  几十年来,研究者们移植致力于揭示神经退行性疾病的发生机制。近年来,一系列因子,包括遗传突变以及病毒感染等,都被认为与疾病的发生存在相关性。  由于衰老是导致神经退行性紊乱的最主要的因素,因此对这一相关性的内在机制的理解显得尤为重要。最近,来自哈佛大学医学院的研究者们提供了新的线索。  在最近发表

Nature-Aging:揭示调控灵长类器官衰老的表观转录组机制

m6A是目前已知的真核细胞mRNA上最常见的一类化学修饰,其建立、读取和擦除分别受到相应甲基化酶(writer)、结合蛋白(reader)以及去甲基化酶(eraser)的动态可逆调控。研究表明,m6A能够通过调节mRNA的剪接、出核、稳定性以及翻译等生命周期活动,参与调控机体的诸多生理或病理进程,包

去除衰老细胞可减缓认知衰退

  英国《自然》杂志近日发表了一篇生物学研究:美国科学家团队通过转基因小鼠实验,报告了衰老细胞与神经变性之间的因果关系,该最新研究结果将可为治疗神经退行性疾病开辟一条潜在的新治疗途径。  随着时间的推移,细胞增殖与分化能力和生理功能会逐渐发生衰退。正是细胞衰老死亡与新生细胞生长的动态平衡,维持着机体

颠覆认知!衰老会促进癌症复发!

  年龄是癌症的主要危险因素,因此,预防老龄化的发展可能会阻止癌症的发生。衰老的某些特征也会在细胞中发生。一方面,衰老是一种有效的抑制肿瘤的机制。这是由细胞周期阻滞程序和诱导免疫介导的。然而另一方面,衰老细胞在衰老组织中积累,阻碍组织更新并导致年龄相关性癌症有关的慢性炎症的发生。因此,衰老的选择性干

最新研究揭示古病毒复活驱动脑衰老

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502108.shtm6月1日,中国科学院动物研究所研究员刘光慧课题组与合作者在《细胞报告》在线发表文章,首次揭示核纤层磨损引起的内源性逆转录病毒复活,可以作为人类额叶衰老的驱动力及生物标志物,这为脑衰老的

发现线粒体DNA突变引发肠衰老机制与逆转方案

原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516707.shtm

清除衰老细胞有助于改善衰老群体的认知功能

  妙佑医疗国际(Mayo Clinic) 的研究人员正在探索是否可以通过研究基因对药物的反应或给药方式来逆转认知功能减退问题。  妙佑医疗国际(Mayo Clinic) 的研究结果表明,清除衰老小鼠体内的衰老细胞可改善已出现痴呆迹象的小鼠的认知能力。研究团队通过对衰老小鼠使用sensenolyti

概述细胞衰老的衰老机制

  氧自由基学说认为细胞衰老是机体代谢产生的氧自由基对细胞损伤的积累。端粒学说提出细胞染色体端粒缩短的衰老生物钟理论,认为细胞染色体末端特殊结构-端粒的长度决定了细胞的寿命。DNA损伤衰老学说认为细胞衰老是DNA损伤的积累。基因衰老学说认为细胞衰老受衰老相关基因的调控。分子交联学说则认为生物大分子之

Nature:新研究发现确保DNA正确转录方向的机制

  麻省理工学院的生物学家发现了人体细胞确保其DNA向正确方向进行阅读、阻止“垃圾DNA”拷贝的机制。   人类基因组中大约有15%是蛋白质编码基因,但是近年来科学家发现有相当多的垃圾DNA,或者说基因间DNA可转录为RNA。科学家们一直在试图了解这些RNA的作用。在2008 年,MIT的科学

去除衰老细胞可减缓小鼠认知衰退

图片来源于网络  近日,《自然》在线发表的一篇论文报道了小鼠衰老细胞与神经变性之间的因果关系。该研究结果为治疗神经退行性疾病开辟了一条潜在新途径。  过去的研究表明,随着年龄的增长,衰老细胞(失去分裂能力的功能失调细胞)在体内积聚,并积极促进组织变性。去除这些细胞可以抵抗许多衰老的影响。在脑老化和神

分子植物卓越中心揭示抗铝毒转录因子调控机制

  10月21日,中国科学院分子植物科学卓越创新中心上海植物逆境生物学研究中心研究员黄朝锋研究组在Plant Cell上在线发表题为Regulation of Aluminum-Resistance in Arabidopsis Involves the SUMOylation of the Zin

研究揭示脑血管维持乳酸稳态调节成体神经发生认知机制

  乳酸长期以来被认为是有害的代谢终产物,但是近年来的研究显示乳酸可以作为重要能量底物和信号分子影响神经细胞功能,提示大脑乳酸稳态可能对于中枢神经系统稳定运行至关重要。哺乳动物大脑海马区可以通过成体神经发生不断产生新生神经元,参与学习记忆以及情绪调控等功能。乳酸对海马区成体神经发生具有怎样的影响,对

心理所揭示应激导致认知灵活性缺失的神经机制

  创伤后应激障碍(PTSD)患者难以将注意从创伤相关线索转移开来,他们长期受困于创伤相关情境,表现为长期反复、插入性的闪回创伤记忆。这可能与高强度的应激事件导致认知灵活性受损有关。已有研究显示,内侧前额叶皮质(mPFC)至伏隔核(NAc)的神经通路在认知灵活性的调控中具有重要作用,但PTSD患者的

抗糖等于抗衰老?

  继抗氧化之后,在娱乐圈和美妆界,“抗糖化”又成了抗衰老界的新宠。抗糖化究竟是什么?戒糖真有抗衰老的功效吗?  所谓糖化反应,是指还原糖(如葡萄糖)在没有酶催化的情况下,与蛋白质、脂质或核酸发生一系列反应,最终生成晚期糖化终末产物(AGEs)的过程。  AGEs的形成是不可逆的,它们在人体组织中积

揭露:增龄伴随的海马功能减退的分子机制

  海马体,作为脑的重要组成部分,在学习和记忆中发挥着至关重要的作用。随着年龄的增长,海马功能逐渐退化,导致认知功能的减退以及多种人类神经退行性疾病的发生。由于海马结构复杂,细胞组成具有高度异质性,传统研究技术难以精确揭示海马衰老过程中不同细胞类型的衰老规律及分子调控网络。此外,由于伦理及样本来源的

研究揭示转录因子在小麦抗白粉病中的作用机制

近日,西北农林科技大学农学院张宏研究员团队以多组学数据分析挖掘到的小麦转录因子TaNAC1为切入点,揭示了其在小麦抗白粉病中的遗传基础和作用机制,解析了该基因亚基因组同源基因的功能性遗传差异,并阐明了其调控细胞凋亡和增强抗病性的作用机理。该研究成果发表在New Phytologist上。该研究发现瞬

研究揭示转录因子MYC2调控玉米抗虫响应机制

茉莉酸是重要的植物激素,在植物响应昆虫取食的过程中发挥着重要的作用,而MYC2是茉莉酸信号转导途径中关键的转录因子。近日,中国科学院昆明植物研究所研究员吴建强团队通过遗传学、生物化学、分子生物学和生物信息学手段,确定了玉米MYC2在茉莉酸介导的抗虫防御响应过程中的功能。该研究在线发表在《植物学报》。

研究揭示转录因子在小麦抗白粉病中的作用机制

近日,西北农林科技大学农学院张宏研究员团队以多组学数据分析挖掘到的小麦转录因子TaNAC1为切入点,揭示了其在小麦抗白粉病中的遗传基础和作用机制,解析了该基因亚基因组同源基因的功能性遗传差异,并阐明了其调控细胞凋亡和增强抗病性的作用机理。该研究成果发表在New Phytologist上。该研究发现瞬

Nature子刊揭示发病新机制-阿尔茨海默治疗迎来新曙光

  近日,华中科技大学王建枝课题组与同济大学叶克强课题组等人在Nature Communications上在线发表了题为“C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of

Cell子刊:除了瓦解免疫系统,HIV还导致早衰?

  目前,抗逆转录病毒联合疗法(ART)是艾滋病治疗的最有效方法,它将艾滋病从绝症拉回至可控制的慢性疾病状态。但是,虽然ART疗法延长了生存年限,但是最新研究发现艾滋病患者似乎会比正常人平均提前衰老5年!  人类免疫缺陷病毒,HIV,一旦侵入人体免疫细胞就会永久潜伏,并伺机瓦解免疫系统,致使艾滋病患

研究成果:灵长类海马衰老的单细胞转录组图谱绘制

  海马体作为脑的重要组成部分,在学习和记忆中发挥重要作用。随着年龄增长,海马功能逐渐退化,导致认知功能的减退以及多种人类神经退行性疾病发生。由于海马结构复杂,细胞组成具有高度异质性,传统研究技术难以精确揭示海马衰老过程中不同细胞类型的衰老规律及分子调控网络。此外,由于伦理及样本来源的限制,不同年龄

认知功能干预可改善神经疾病患儿认知功能

  儿童神经系统疾病、获得性脑损伤以及神经发育性疾病等均具有一个共同的特征,即都会出现认知功能的损害,包括注意力、记忆力以及执行功能等。既往有许多研究显示认知功能干预对以上疾病的患儿可能具有疗效获益,但结论尚不明确。    为此,来自加拿大的学者Kristen E. Robinson等人进行了一项系

裸鼹鼠:挑战人类对衰老和繁殖的认知

  北京时间8月6日消息,据国外媒体报道,目前美国接近1500名患者等待肺器官移植。但是捐献者提供肺器官数量不够,同时通过抑制受体免疫系统,使患者身体不排斥新器官是十分危险的。实验室培育的肺器官将为急需肺器官移植患者带来希望,这些人工培育的肺器官是采用受体自己的细胞生长而成,并且最新实验表明,可将人

刷新认知!肠道菌群竟影响寿命!导致衰老!

   肠道菌群是构成人体免疫体系的关键重要因素,渗透参与到免疫系统的前端、终端、末端,一旦免疫系统遭袭,肠道菌群往往也无法幸免于难,肠道菌群失调症就是免疫紊乱难以避免的后果之一。在我们的固有认知里,肠道菌群失调是共生菌抑制和/或致病菌繁殖的结果,然而,近日EPFL全球卫生研究所Bruno Lemai

裸鼹鼠:挑战人类对衰老和繁殖的认知

  裸鼹鼠群体由2只具有生殖能力的首领和大约300只没有生殖能力的工鼠组成。对于首领而言,繁殖会造成额外的能量消耗,鼠后在生育的基础上还要进行哺乳,本应因此削减寿命,但它们的寿命却比工鼠更长,且终生保有繁殖能力。   德国莱布尼茨老年化研究所的研究者们调查了这一悖论背后的遗传学机制,他们的发现近期

衰老神经元会阻碍小鼠神经新生

研究人员在1月21日发表于《干细胞报告》中的一项研究中表示,破坏老化干细胞生态位中的衰老细胞可以增强小鼠的海马体神经发生和认知功能。“我们的研究结果进一步支持了这一观点,即过度衰老是老化背后的一个驱动因素,即使在晚年,这些细胞的减少也能更新和恢复干细胞生态位的功能。”论文通讯作者、加拿大多伦多病童医

厦大团队发现下丘脑Menin蛋白或为衰老关键靶点

  衰老是一个复杂的生物学过程。先前大量研究已经证实,衰老与阿尔茨海默病等很多退行性疾病密切相关,然而,驱动衰老过程以及衰老相关认知能力下降的分子机制目前尚不完全明确。  近日,厦门大学医学院神经科学研究所张杰、冷历歌团队揭示了下丘脑 Menin 蛋白表达的下降在衰老中发挥关键作用,并指出通过膳食补

研究揭示主观认知下降老年人记忆提取客观损伤的神经机制

老年认知障碍如阿尔茨海默病等对个人、家庭和社会造成负担。主观认知下降是自我报告的认知能力下降,但神经心理学测验成绩正常,被认为是阿尔茨海默病临床前期极早期阶段。有研究从分子影像、静息态fMRI等角度发现,内侧颞叶和控制网络可能是主观认知下降病理影响的重要脑区。但是,缺乏高敏感性的认知神经科学研究框架