人工肌肉也能“弹性”十足?他们揭秘弹性驱动新机制
“想象一下,我们既能用手指捏起一粒芝麻,也能提起一桶水。无论外力大小如何变化,肌肉都能恢复到原来的长度,为下一个动作做好准备。”中国科学院苏州纳米技术与纳米仿生研究所(以下简称苏州纳米所)研究员邸江涛说,这就是骨骼肌的弹性驱动特征。 然而,模仿哺乳动物骨骼肌设计的人工肌肉却并不具备此类弹性驱动机制,一旦用较大力度挤压拉扯,就像一根生锈的弹簧,出现无法恢复的不可逆形变,极大限制了人工肌肉纤维驱动器的驱动精度、重复性和实用性。 针对这个问题,邸江涛团队设计了一种尼龙纱线@聚二甲基硅氧烷(nylon@PDMS)弹性人工肌肉纤维,具有和生物肌肉类似的弹性驱动性能,并基于传统商业化材料开发,为商业化发展奠定良好基础。近日,相关研究发表于《物质》。 审稿人作出高度评价,该研究为对高耐用性和适应性有需求的机器人技术及可穿戴技术领域提供重要进展与参考。 人工肌肉“弹力”升级 人工肌肉是模仿哺乳动物骨骼肌设计的一种柔性驱动器,具备高......阅读全文
新型生物材料能逼真模仿肌肉弹性
加拿大不列颠哥伦比亚大学的研究人员应用人工蛋白质成功研制出一种新型固态生物材料,这种材料可以非常逼真地模拟肌肉的弹性性质。该项成果标志着加拿大科学家在使用人工蛋白质构造固态生物材料方面找到了一条全新的途径,在材料科学和人体组织工程上极具应用前景。相关文章发表在5月6日出版的《自然》
新型“肌肉”驱动机器腿能走会跳
科技日报讯(记者张梦然)瑞士苏黎世联邦理工学院和德国马克斯普朗克智能系统研究所共同开发出一种“人造肌肉”驱动机器腿,其不仅比传统机器腿更节能,而且可进行高跳、快速移动、检测和应对障碍物,完成这些任务都不需要复杂的传感器。研究发表在最新《自然·通讯》杂志上。近70年来,绝大部分机器人都有一个共同点:由
首个由蚯蚓肌肉驱动的生物MEMS微芯片阀门
日本理化学研究所(RIKEN)生物系统动力学研究中心(BDR)的科学家利用能够持续提供数分钟高收缩力的蚯蚓肌肉组织,开发出了第一个由活细胞驱动的MEMS微芯片阀门,并且与电控阀门不同,这款微芯片阀门不需要电池等任何外部电源。 据麦姆斯咨询报道,日本理化学研究所(RIKEN)生物系统动力学研究中
肌肉组织驱动的两足机器人问世
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516833.shtm与机器人相比,人类肢体极为灵活,能做出精细动作,并能有效地将能量转化为运动。受人类步态的启发,日本研究人员将肌肉组织和人造材料结合在一起,制造出一款双足生物混合机器人,可行走和旋转。相
首个由蚯蚓肌肉驱动的生物MEMS微芯片阀门
日本理化学研究所(RIKEN)生物系统动力学研究中心(BDR)的科学家利用能够持续提供数分钟高收缩力的蚯蚓肌肉组织,开发出了第一个由活细胞驱动的MEMS微芯片阀门,并且与电控阀门不同,这款微芯片阀门不需要电池等任何外部电源。 据麦姆斯咨询报道,日本理化学研究所(RIKEN)生物系统动力学研究中
Cell-Rep:肌肉干细胞也能够驱动癌症的发生?
患有杜氏肌营养不良症(DMD)的人有时会发展出一种罕见的肌肉癌,称为横纹肌肉瘤,这是由于肌细胞不断努力重建受损组织导致的。然而,人们对这种癌症是如何产生的知之甚少,因此阻碍了癌症风险预测、治疗或检测的发展。 现在,Sanford Burnham Prebys医学发现研究所(SBP)的科学家已经
液态金属人工肌肉驱动的机器鱼游了40分钟
记者从中国科学技术大学获悉,该校工程科学学院张世武教授、金虎副研究员与合作者合作,提出了一种基于电化学方法改变液态金属表面张力的液态金属人工肌肉(LMAM)来模仿肌肉的收缩及舒张功能,为柔性驱动器在微机电系统、生物医学等领域的应用提供全新思路。相关成果日前发表在《先进材料》上。 信天翁可以连续
智能仿生液晶弹性体软驱动器领域获重要进展
近日,华南师范大学华南先进光电子研究院周国富教授团队教授陈家文与中国科学院外籍院士Ben L. Feringa合作,在智能仿生液晶弹性体软驱动器领域研究取得重要进展。相关成果发表于《美国化学会志》(Journal of the American Chemical Society)。 尽管人工分
日本科学家研制出肌肉驱动的机器人
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516858.shtm
日本科学家研制出肌肉驱动的机器人
与机器人相比,人的身体更灵活,能够进行精细运动,并能将能量有效转化为运动。日本研究人员从人类步态中获得灵感,将肌肉组织和人造材料结合在一起,制造了一款两腿生物混合机器人,使得机器人能够行走和旋转。相关研究1月27日发表于《物质》。“这是生物学和机械学的融合,作为以生物功能为特色的机器人技术新领域,生
弯曲弹性模量和弹性模量
弹性模量为E,也称杨氏模量,单位是GPa。没有所谓的弯曲模量,你说的应该是切变模量G。二者的换算关系为G=E/2(1+v)。
新型磁斥力非接触式谐振耦合双锥体介电弹性体驱动器
日前,中国科学院深圳先进技术研究院医疗机器人与微创手术器械研究中心副研究员高兴团队研发出新型磁斥力非接触式谐振耦合双锥体介电弹性体驱动器(Magnetically Coupled Dielectric Elastomer Actuator,MCDEA),该软体驱动器采用新型电-磁-力耦合机制,具
新型磁斥力非接触式谐振耦合双锥体介电弹性体驱动器
日前,中国科学院深圳先进技术研究院医疗机器人与微创手术器械研究中心副研究员高兴团队研发出新型磁斥力非接触式谐振耦合双锥体介电弹性体驱动器(Magnetically Coupled Dielectric Elastomer Actuator,MCDEA),该软体驱动器采用新型电-磁-力耦合机制,具
弹性常数,弹性模量,杨氏模量的区别
弹性模量是应力和应变的比值,杨氏模量,又称拉伸模量,拉伸模量专指受正应力时的弹性模量,拉伸强度是能承受的最大应力,达到此应力时结构发生破坏。模量:材料在受力状态下应力与应变之比。相应于不同的受力状态,有不同的称谓。例如,拉伸模量(E);剪切模量(G);体积模量(K);纵向压缩量(L)等。该词由拉丁语
弹性常数,弹性模量,杨氏模量的区别
弹性模量是应力和应变的比值,杨氏模量,又称拉伸模量,拉伸模量专指受正应力时的弹性模量,拉伸强度是能承受的最大应力,达到此应力时结构发生破坏。模量:材料在受力状态下应力与应变之比。相应于不同的受力状态,有不同的称谓。例如,拉伸模量(E);剪切模量(G);体积模量(K);纵向压缩量(L)等。该词由拉丁语
弹性常数,弹性模量,杨氏模量的区别
弹性模量是应力和应变的比值,杨氏模量,又称拉伸模量,拉伸模量专指受正应力时的弹性模量,拉伸强度是能承受的最大应力,达到此应力时结构发生破坏。模量:材料在受力状态下应力与应变之比。相应于不同的受力状态,有不同的称谓。例如,拉伸模量(E);剪切模量(G);体积模量(K);纵向压缩量(L)等。该词由拉丁语
南开大学徐加良基于有机分子晶体的鲁棒热弹性微驱动器
热致晶体的特征是由热诱导引起的固态到固态的直接相转变,并伴随着各向异性晶格扩展引起晶体突然的跳跃、弯曲、变形或是旋转等机械响应。它们属于一类动态晶体,可对热、光或压力等外部刺激作出响应,并伴有电、光、磁、机械等各种特性的开关效应。有机晶体因其易碎性难以适应晶体形状和尺寸较大的各向异性变化,强烈的
弹性本底的概念
中文名称弹性本底英文名称elastic background定 义除双弹性过程使探针粒子散射所产生的响应信号外,探测系统和能量过滤系统对其他过程的响应信号。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱和射线分析仪器一般名词(三级学科)
弹性蛋白的简介
结缔组织尤其腱和动脉的弹性组织中的一种主要的硬蛋白。为一种水不溶性、高交叉度的水解蛋白。弹性蛋白分子中非极性氨基酸占95%,甘氨酸含量接近总量的1/3,脯氨酸占10%,羟脯氨酸占1%。
弹性蛋白的组成
在体内,弹性蛋白通常与结缔组织中的其他蛋白质相关。体内的弹性纤维是无定形弹性蛋白和纤维原纤维的混合物。这两种成分主要由较小的氨基酸组成,例如甘氨酸、缬氨酸、丙氨酸和脯氨酸。总弹性蛋白范围为正常犬动脉中干脱脂动脉重量的58%至75%。新鲜组织和消化组织之间的比较表明,在35%的应变下,至少48%的动脉
什么是弹性蛋白?
弹性蛋白是有颚类细胞外基质的关键蛋白。它具有高弹性,存在于结缔组织中,使身体中的许多组织在拉伸或收缩后恢复其形状。弹性蛋白可以帮助皮肤在被戳或捏时恢复到原来的位置。弹性蛋白也是脊椎动物体内重要的承重组织,用于需要储存机械能的地方。在人类中,弹性蛋白由ELN基因编码。
什么是非弹性本底?
中文名称非弹性本底英文名称inelastic background定 义除去非弹性散射过程的探针粒子的响应信号外,能量过滤系统和探测系统对其他过程的响应信号。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱和射线分析仪器一般名词(三级学科)
弹性蛋白的功能
ELN基因编码一种蛋白质,它是弹性纤维的两种成分之一。编码的蛋白质富含疏水氨基酸,如甘氨酸和脯氨酸,它们形成由赖氨酸残基之间的交联所界定的可移动疏水区域。已发现该基因的多个转录变体编码不同的亚型。弹性蛋白的可溶性前体是原弹性蛋白。无序的表征与弹性反冲的熵驱动机制一致。结论是构象障碍是弹性蛋白结构和功
微流控芯片驱动磁驱动泵
采用磁激发的泵(magnetic-actuated pump) 即磁驱动泵(magnetically-driven pump ,MDP) 也是一种重要的微流体驱动控制技术—磁流控技术。磁流控技术与光驱动泵一样,一般需要在被驱动流体中添加亲磁性纳米粒子介质,实现对流体的有效控制。磁流体驱动泵的优缺点优
肌肉疾病的简介
肌肉疾病(muscular disorders)通常是指骨骼肌疾病。骨骼肌是执行机体运动的主要器官,也是机体能量代谢的重要器官,人体共600多块肌肉,其重量约占成人体重的40%。骨骼肌是由数以千计的纵向排列的肌纤维聚集而成,肌纤维( 肌细胞)为多核细胞,外被浆膜(肌膜,即肌细胞膜),其外层为基膜
肌肉活检的作用
肌肉活检就是采取少量的肌肉组织进行病理检查,相关的病理检查有很多,可以制作简单的涂片也可以进行免疫组化的检查等,从而对肌肉的疾病作出诊断。病理检查是所有诊断的金指标,因为可以直接的看到细胞的发育程度,比如幼稚细胞、成熟细胞或者细胞的异型性等,综合的来判断组织疾病的原因。所以肌肉活检是对肌肉疾病诊
肌肉疾病的分类
肌病的分类很不统一。1965年世界神经肌肉病研究协作组在维也纳开会准备制定神经肌肉病的国际统一分类。沃尔顿等 4人从神经原性肌病和肌原性肌病两个方面考虑,提出神经肌肉病应包括脊髓前角细胞、 神经根、 周围神经、 神经肌肉接头和肌肉本身的疾病,其分类方案在1967年蒙特利尔国际会议上通过,由世界神
光弹性仪的种类
通常有透射式光弹性仪,反射式光弹性仪、散光光弹性仪和全息光弹性仪等,以透射式和反射式光弹性仪应用较为普遍。
弹性蛋白的相关介绍
弹性蛋白是生皮组织中弹性纤维(elastic fiber)的主要成分。弹性蛋白的肽链含有713 个以上的氨基酸残基。不同于胶原和角蛋白,弹性蛋白的氨基酸序列中不存在贯穿整个肽链的连续的重复性周期结构,但是存在交替的疏水和亲水性肤段。由氧化赖氨酰形成的锁链素和开链锁链素是弹性蛋白特有的交联结构。这
皮肤弹性检查的概述
皮肤的液体含量(血液、淋巴液)、弹力纤维和肌纤维的特性及神经组织的紧张度是决定皮肤弹性高低的重要因素。营养良好,体况佳良,其皮肤均有一定的弹性临床上,把皮肤弹性减退作为判定脱水的指标之一。