JNeurosci揭示帕金森病的最新遗传因素

帕金森病最严重的方面,可能并不是其使人衰弱的症状,而是使患者失去控制自己运动的能力。全世界有数百万人及其家人每天都遭受这种疾病的不良影响。然而,这种疾病的根本原因仍然是个谜。但现在,加州大学旧金山分校格莱斯顿研究所的科学家们发现,大脑中的两种蛋白之间的相互作用,能够加剧引起帕金森病的脑细胞或神经元的退化和死亡。这些研究结果,与传统观点形成了鲜明的对照,为开发靶定这种疾病难以捉摸的潜在机制的疗法,奠定了必要的基础。 在最近的Journal of Neuroscience杂志上发表的这项研究中,格莱斯顿的研究员Steve Finkbeiner博士实验室的科学家们,利用他们独一无二的机器人显微镜的强大力量,随着时间的推移,追踪单个神经元的生命期限。他们利用显微镜来研究各种神经退行性疾病,在这项研究中,他们的注意力集中在LRRK2——帕金森的最常见遗传因素。 科学家们早就知道,LRRK2基因突变能够导致LRRK2蛋白......阅读全文

美用生物荧光蛋白观察神经元内蛋白质运动过程

  网易探索8月26日报道 据物理学家组织网8月22日报道,最近,美国南加州大学一个研究小组利用从水母体内分离出的生物荧光蛋白,照亮了神经元内部并拍摄了一段视频,揭示了蛋白质在神经细胞区室内运动的情景,可“看到”蛋白质定向地通过神经元以及大脑重建的过程。相关论文最近发表在《细胞・报告》杂志上。

研究揭示神经元极性发育分子与细胞机制

  中科院上海生科院神经所蒲慕明研究组研究了神经元的形态建成机制,从而揭示了神经元极性发育的分子与细胞机制。相关成果已在线发表于美国《国家科学院院刊》。   在哺乳动物海马齿状回结构中,颗粒细胞在持续不断地产生。这种成年新生的神经元,在记忆形成和情绪调控中均发挥重要作用。颗粒细胞具有经典的双极性结

大鼠大脑皮层神经元细胞培养实验

机械性划割培养 酶消化法             实验方法原理 SD胎鼠脑皮层神经元体外培养7 d ,微量移液器塑料滴头于培养孔内机械性划割培养之神经元,依划割程度不同

大鼠大脑皮层神经元细胞培养实验

机械性划割培养 酶消化法             实验方法原理 SD胎鼠脑皮层神经元体外培养7 d ,微量移液器塑料滴头于培养孔内机械性划割培养之神经元,依划割程度不同

人工神经元实现与活体细胞“对话互动”

  揭秘大脑功能,解读脑部信号,不仅可为脑疾病提供诊疗依据,也能为研制类脑芯片提供思路。脑机接口是脑研究领域的热点,它是人脑与外界电子设备信息交互的通道,也是监测与解析脑部活动、治疗神经疾病、构建智能假肢等技术领域的基石。  大脑的决策、情绪调控等功能与神经递质密切相关。然而,绝大多数的脑机接口均依

小鼠原代海马神经元细胞的分离培养方法

原代小知识——小鼠原代海马神经元细胞的分离培养方法海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞

浅谈大鼠海马神经元细胞的分离培养方法

大鼠海马神经元细胞分离自海马体,海马体,又名海马回、海马区、大脑海马,海马体主要负责记忆和学习。海马神经元细胞是海马区的主要细胞组成,主要功能是参与近期记忆、情绪及内脏功能调节、是老年性痴呆、癫痫等疾病的主要病灶之一。    海马属于大脑的边缘系统,在学习、记忆、情绪反应及神经系统疾病的病理生理变化

干细胞来源的神经元改善患者认知功能

  美国大约有340万癫痫症患者,占总人口的1.2%。尽管大多数患者对药物治疗有反应,但是仍有20%-40%患者在尝试多种抗癫痫药物后继续发作。还有一个问题,即使药物能起作用,也可能产生认知和记忆障碍以及抑郁。  德州A&M大学医学院分子和细胞医学系教授、再生医学研究所副所长Ashok K. She

小鼠海马神经元细胞分离培养的步骤详解

  小鼠神经元细胞中神经元是构成神经系统结构和功能的基本单位。细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。   (1)75%(体积分数)酒精消毒新生24h内的健康C57小鼠,在无菌条件下脱颈处死,剪开头皮及颅骨,取出脑组织,置于盛冷的pH7.2,无钙、镁的D-Hank'

美揭示神经元转运蛋白的分子运动机制

  神经元细胞拥有不同的转运蛋白,但这些转运蛋白如何工作迄今还是一个谜。据美国物理学家组织网4月24日报道,美国科学家最近终于弄清楚了转运蛋白分子的工作机制,研究发表在24日出版的《自然》杂志上。科学家表示,新研究有望改进对精神疾病治疗的效果,加深理解可卡因等神经药物的作用原理。

性细胞和神经元有什么共同点呢?

  谷氨酸(Glu)是动物中枢神经系统的一种重要兴奋性神经递质,它与相应细胞膜受体即谷氨酸受体(glutamate receptors ,GluR)相互作用引起系列级联反应,涉及大脑很多重要功能。  植物也含有许多GluR编码基因,并且这些基因与动物的高度同源。  BC 280年的亚里士多德认为植物

Nature子刊:14天让干细胞变身神经元

  支配着肌纤维的运动神经元是运动活动的必要条件。在许多疾病中,运动神经元退化是导致患者瘫痪和死亡的重要原因。来自法国巴黎干细胞疗法及单基因疾病研究所(I-Stem  -Inserm/AFM/UEVE)的研究人员,与法国国家科学研究院(CNRS)和巴黎笛卡尔大学合作近期开发出了一种新的方法,其能够在

研究发现“僵尸”脑细胞或能发育为“工作神经元”

  近日,一项刊登在国际杂志Science Advances上的研究报告中,来自弗朗西斯克里克研究所等机构的科学家们通过研究发现,在大脑生长过程中预防神经元的死亡,意味着这些“僵尸”细胞可以发展成为功能性的神经元细胞。图片来源:Public Domain  在大脑发育过程中,大量神经元会自我破坏作为

细胞能量工厂——线粒体-如何解码神经元活动模态

  中国科学院自动化研究所研究员韩华团队通过其自主研发的电镜三维成像和快速重建技术,首次展现小鼠运动皮层锥体神经元胞体和树突中数百个线粒体的三维形态,发现神经元树突中线粒体依靠较细的“线粒体纳米管道”连接在一起(管道直径30-50纳米)的现象,有力支撑线粒体解码神经元活动的研究。  相关成果“Bra

Science子刊:癌细胞和神经元的死亡刹车

  来自北卡罗来纳州立大学医学院的研究人员发现,PARC/CUL9蛋白帮助神经元和脑癌细胞克服了导致大多数其他细胞死亡的生物化学机制。神经元的长期存活确保了随着年龄的增长我们大脑仍能正常的运作。而脑癌细胞的长期生存则促成了肿瘤生长以及扩散。  发表在《科学信号》(Science Signaling)

Nature子刊:活体细胞重编程生成神经元

  神经胶质细胞是人类中枢神经系统中的一类神经细胞,它们并不像神经元那样传导电冲动,长期以来被认为只起支持作用。直到近些年来,科学家们才开始认识到神经胶质细胞(尤其是星形胶质细胞)在大脑中的调节作用。有研究显示,星形胶质细胞能够保护神经细胞,并为其提供养分。在人类大脑中,有超过三分之一的细胞是星形胶

解密神经元:脑连接图谱走向单细胞精度时代

稀疏标记系统工作原理15个多巴胺神经元的全脑投射形态重构  就像广袤无垠的宇宙中有无数星体,人类大脑中分布着千亿数量的神经元,它们“杂乱无章”地分布且相互连接,发挥着感受刺激和传导兴奋的作用。这些决定人类思考能力的大脑神经元究竟是怎么连接的?这个问题自神经生物学兴起以来一直悬而未解。  过去,神经生

脑损伤激活胶质细胞产生神经元研究获进展

  8月23日,eLife 期刊在线发表了中国科学院脑科学与智能技术卓越创新中心/神经科学研究所、上海脑科学与类脑研究中心、神经科学国家重点实验室何杰研究组题为《脑损伤激活斑马鱼视顶盖放射状胶质细胞的细胞周期进入随机性及命运决定机制》的研究论文。该研究回答了两个关于胶质细胞如何响应脑损伤的关键性问题

Cell-Metabol:星形细胞和神经元细胞间或存在乳酸盐的交换

  神经细胞可以利用葡萄糖和乳酸盐来满足其高能量的需求,近日,苏黎世大学的科学家发现了新的证据,他们首次在完整的小鼠大脑中找到证据证实了不同大脑细胞间存在乳酸盐的交换,而这一研究证实了一个20多年的科学家假设。  相比其它器官而言,人类大脑具有最高的能量需求,而神经细胞的能量供给以及乳酸盐的特殊角色

通过高内涵分析软件进行人体干细胞诱导神经元细胞系...

通过高内涵分析软件进行人体干细胞诱导神经元细胞系的3D模型表征分析简介开发更复杂的、生物相关的和预测的基于细 胞的化合物筛选方法是药物发现中的一个主 要挑战。三维 (3D) 分析模型的开发和集成 正变得越来越流行,并驱动着生物转化学 的发展。具体而言,3D 培养物具有精致浓 缩了人体组织各方面特

如何参与促进骨髓间充质干细胞向神经元样细胞的分化?

  近来的研究表明,microRNA在干细胞自我更新及其分化中发挥重要的调节作用。来自中国医科大学附属第一医院的邹德峰博士所在课题组认为,microRNA可能参与了干细胞定向分化为神经元的过程,可能是定向诱导分化的重要靶点。研究设计对骨髓间充质干细胞与神经干细胞或神经元差异最明显的microRNA进

科学家将人类皮肤细胞直接成功转化为运动神经元细胞

  科学家们一直在尝试开发治疗神经变性疾病的新型疗法,但目前他们并不能在实验室中培养并且促进运动神经元的生长,运动神经元能够驱动肌肉收缩,而且其损伤往往是引发多种严重疾病的原因,比如肌萎缩侧索硬化、脊髓性肌萎缩等,所有这些疾病最终都会引发患者瘫痪并且过早死亡。   图片来源:Daniel Aber

干细胞也内卷!“卷王”能产出最多脑神经元

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/498422.shtm当人们感叹社会陷入内卷困境时,殊不知,内卷之战从胚胎发育阶段就打响了。4月12日,中国科学院遗传与发育生物学研究所研究员吴青峰团队在《细胞发育》杂志在线发表论文,并被选为封面文章。这项

源自双相障碍患者的星形胶质细胞影响神经元活动

  星形胶质细胞是一种脑细胞,而源自双相情感障碍患者诱导性多能干细胞的星形胶质细胞不能为神经元活动提供理想的支持。3月5日,发表在Cell Press细胞出版社旗下期刊Stem Cell Reports上的一篇论文显示,这种疾病可以追溯到一种叫做白细胞介素-6(IL-6)的促炎分子,这种分子由星形胶

eLife:脑损伤激活胶质细胞产生神经元研究获进展

  8月23日,eLife 期刊在线发表了中国科学院脑科学与智能技术卓越创新中心/神经科学研究所、上海脑科学与类脑研究中心、神经科学国家重点实验室何杰研究组题为《脑损伤激活斑马鱼视顶盖放射状胶质细胞的细胞周期进入随机性及命运决定机制》的研究论文。该研究回答了两个关于胶质细胞如何响应脑损伤的关键性问题

人类细胞制成微型“机器人”,可治愈受损神经元

“一旦我们了解了细胞群体愿意和能够做什么,就可以开始控制它,不仅是为了独立的‘机器人’,而且是为了再生医学,包括重新长出四肢。”科学家们研发出了一种新型的“微型人体细胞机器人”,名为“Anthrobots”。这种“机器人”无需进行基因改造,就可以实现自我组装、移动,并且将其添加到受伤的神经元中时,它

新基因治疗将脑胶质细胞转化为神经元!

  一种新的基因疗法可以将某些脑胶质细胞转变成功能神经元,这反过来将可以帮助中风或阿尔茨海默氏症、帕金森氏症等神经疾病患者修复大脑。  在一系列动物实验中,由宾夕法尼亚州立大学陈功(Gong Chen)博士领导的一个研究小组开发了一种新的基因疗法,对神经胶质细胞进行重新编程——这些胶质细胞包围着每个

Nature:神经元能刺激胃癌,促进癌细胞生长和扩散

研究人员发现,胃癌与附近的感觉神经建立电连接,并利用这些恶性回路刺激癌症的生长和扩散。这是第一次发现神经和大脑外的癌症之间存在电接触,这增加了许多其他癌症通过建立类似联系而发展的可能性。这项研究公布在2月19日的Nature杂志上,南通大学附属医院胃肠外科副主任医师、副教授支小飞作为唯一第一作者,美

新型狨猴iPSCs细胞系衍化多巴胺能神经元

  研究人员报道,狨猴(marmoset)成纤维细胞来源的iPSCs能分化出全部的3个胚胎干细胞系,包括中胚层、外胚层和内胚层。当刺激成神经元时,iPSCs可表达与多巴胺能表型一致的基因和其他生物标志。  因为寿命比猕猴短,狨猴是研究衰老相关疾病(如帕金森病)的最佳非人灵长类动物模型。狨猴体细胞来源

α微管蛋白乙酰化修饰调控神经元轴突分支的分子机制

  近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所鲍岚研究组的最新研究成果,以α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons