Antpedia LOGO WIKI资讯

PNAS:发现储存“时间记忆”的脑部细胞

神经学家通过实验发现人类大脑中储存“时间记忆”的神经元细胞 据国外媒体报道,美国麻省理工大学的神经学家通过实验发现人类大脑中储存“时间记忆”的神经元细胞。 数十年来,神经学科的科学家在理论上推测人类的大脑中有一部分细胞可以在大脑中为我们日常发生的事件打上“时间标签”,这样我们可以及时回想起过去所发生事情的时间。但是,在科学界一直没有找到可以让人信服的证据证明这部分帮助我们记忆事件发生时间的脑细胞的存在。 近日,麻省理工大学的安-格雷布耶尔(Ann Graybiel)教授和他的研究小组发现,在灵长类动物的大脑中有一类神经元细胞可以将时间信息精确的编译储存。安-格雷布耶尔说:“我们的大脑对所有事情都加上时间的标签,这样就使得我们回忆事情显得非常简单。我们回忆事情的时候首先通过过滤这些时间标签,然后通过时间标签将相关的事情从记忆中提取出来。”这种准确的时间记忆对于开车或弹钢琴等日常活动以及对于我们回忆往事极为重要......阅读全文

PNAS揭示:从T细胞到神经元的“一步式”过程

  近日,PNAS期刊一篇题为“Transdifferentiation of human adult peripheral blood T cells into neurons”的文章揭示了这一发现——科学家们成功将血液中的免疫细胞直接转化成有功能的神经元。  这一戏剧性的转变并不需要细胞经历多能

PNAS:新型荧光cAMP指示器有助于神经元活细胞成像

环磷酸腺苷(cAMP)是一种胞内信使分子,负责包括神经元在内的许多细胞的功能,促进轴突的生长,维持神经元间的通信。cAMP的分子途径已得到充分研究,已知它在调节突触功能中发挥重要作用;然而,能够精确监测其细胞内活动的指标还有待开发。现在,Naoto Saitoh带领的研究团队通过开发一种新型绿色荧光

PNAS:小鼠肠道中神经元的“生-死周期”

  我们以往认为肠道的神经细胞自出生以来到死亡之前都不会发生改变。而约翰霍普金斯大学的研究者们最近的一项研究结果打破了我们的这一认知。  在最近发表在《PNAS》杂志上的一篇文章中,研究者们发现了消化道中密布的数百万个神经元的生死循环的过程,他们称这一发现对于我们理解消化系统的工作机制以及肠道紊乱与

中科大最新PNAS:单神经元质谱技术

  中国科学技术大学化学与材料科学学院教授黄光明与生命科学学院教授熊伟开展紧密合作,基于自行开发的单细胞电生理与质谱联合检测平台,对小鼠大脑中单个神经元开展了多种化学成分的快速质谱检测,并且可以做到同步采集电生理信号,在单细胞层次上成功完成了对神经元功能、代谢物组成及其代谢通路的研究。  相关研究成

PNAS:阿尔茨海默症早期的神经元代谢

  在阿尔茨海默症中,糖、脂肪和钙离子的代谢受到破坏,而这会导致神经元的死亡。内质网与线粒体的连接对于细胞能量代谢很重要,现在瑞典Karolinska医学院的研究人员首次向人们展示了,这种连接在阿尔茨海默症早期发生的改变,揭示了神经元代谢与阿尔茨海默症发展的关联。文章将发表在美国国家科学院院刊PNA

PNAS:细胞的自然之力

  如果将特定类型的活细胞涂布在显微镜载玻片上,细胞会在玻片上缓缓移动,找到它们的邻居,自组装成为简单原始的组织。斯坦福大学的新研究能解释这一现象,并能帮助人们理解复杂生物体的机械力结构和行为。   化学工程师Alexander Dunn博士和斯坦福大学的一个跨学科研究团队,对活细胞内和细胞间

PNAS:灵长类动物初级视觉皮层有更高密度神经元

  1980年,一个研究认为,在灵长类动物的大脑视觉皮层中,每平方毫米的区域的神经元数量比非灵长动物大脑视觉皮层要多2.5倍。然而这个研究一直都存在着争议。美国加州大学圣地亚哥分校的研究者们利用更现代、先进的方法重复了这个实验。他们结果确认了之前的研究,并认为更高密度的神经元可以让灵长类的视觉皮层可

PNAS:将干细胞导入“正途”

  多能干细胞是大自然的双刃剑。因为它们可以形成令人眼花缭乱的细胞类型和组织种类,它们是一种潜在宝贵的治疗资源。然而,如果干细胞在机体内开始失去控制进行分化,相同的发育灵活性也可以导致称作畸胎瘤(teratomas)的危险肿瘤。   为了防止这种结果,研究人员必须在将细胞移植到实验动物或

PNAS:细胞癌变的完美再现

  果蝇翅膀可能成为解开细胞癌变机制的关键钥匙,巴塞罗那生物医学研究所Marco Milán领导的研究小组在黑腹果蝇Drosophila melanogaster中完美再现了细胞转变为癌细胞时的每个步骤。该文章发表在本周的美国国家科学院院刊PNAS上。   这一模型展示了基因组不稳定性和

PNAS:让细胞随光迁移

  华盛顿大学医学院的一项新研究显示,科学家们能够通过一束激光来控制细胞移动,文章于四月八日发表在美国国家科学院院刊PNAS杂志上。他们还希望能够在此基础上,用光控制胰岛素分泌和心律。  “我们成功用光作为控制细胞行为的开关,”N. Gautam教授说。“细胞的行为方式大多取决于它们感知环境信号的能