10年研究揭开酶工作机理

10年研究解开生物化学基本概念之谜:酶是怎样工作? 水牛城大学(UB)的化学家们报道了一个主要负责酶催化作用的机制。UB的研究人员为阐明复杂的酶催化机制铺平了道路,并为人工催化的设计提供了改进。 “越了解催化作用的机制,越能使具有活性的催化剂设计成为可能。”John P.Richard教授说。 “ 试图复制非生物反应中与酶相似的活性的催化剂设计宣告失败,这是由于科学家们未能阐明酶催化秘密” Richard教授说。但是,他说这些秘密一旦为科学家们阐明。将会促进化学工业的发展,从生产饮料到酒精等无数种工业过程得到应用。 酶的分类由它们的分子量来区分,范围从10,000-1,000,000道尔顿不等。而人工合成一个1000道尔顿的分子已经被认为是相当巨大了。 Richard的最新研究结果表明了为什么有效的催化需要如此巨大分子量的分子。 Richard解释说,催化作用是由催化剂与底物识别开始的。他们提供了引人注目的证据,指出......阅读全文

角蛋白酶的降解机理

微生物降解角蛋白的机理各不相同,因此降解过程中的产物也不尽相同。某些真菌还原双硫键是通过菌丝体表面所分泌的亚硫酸盐及其产生的酸性环境;链霉菌则是通过产生胞内还原酶 然而,不溶于水的角蛋白只能以颗粒的形式存在于胞外。因此,双硫键的还原只能发生在代谢能力强的整体细胞外面,最有可能发生在细胞表面的胞联氧化

关于乙醛脱氢酶的机理介绍

  乙醛脱氢酶是随机组合的四聚体,一个突变型的亚基影响了四聚体的稳定性,进而影响酶的正常表达。研究发现无论携带ALDH2*2的是纯合子(AA)还是杂合子(GA),四聚的ALDH2均无活性,即ALDH2*2是显性遗传。杂合子GA的ALDH2四个亚基都稳定的概率是(0.5)^4=6%,因而即使杂合子的野

纤维素酶按降解机理

纤维素酶反应和一般酶反应不一样,其最主要的区别在于纤维素酶是多组分酶系,且底物结构极其复杂。由于底物的水不溶性,纤维素酶的吸附作用代替了酶与底物形成的ES复合物过程。纤维素酶先特异性地吸附在底物纤维素上,然后在几种组分的协同作用下将纤维素分解成葡萄糖。1950年,Reese等提出了C1-Cx假说,该

β半乳糖苷酶的作用机理

β-半乳糖苷酶除了能够催化β-半乳糖苷化合物中的β-半乳糖苷键发生水解,还具有转半乳糖基的作用。早期的研究表明,β-半乳糖苷酶上的活性位点有两个功能团:Cys 的巯基和His 的咪唑基,它们对β-半乳糖苷酶水解乳糖起重要作用。据推测,硫基可作为广义酸使半乳糖苷的氧原子质子化,而咪唑基可作为亲核试剂进

纤维素酶的作用机理

1、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收熊谱成1996。2、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起

纤维素酶的作用机理

1  纤维素酶的降解机理  Reese在1980年提出了C1-CX假说,该假说认为由于天然纤维素的特异性必须以不同的酶协同作用才能将其分解。协同作用一般认为是内切葡萄糖酶首先进攻纤维素的非结晶区,形成外切纤维素酶需要的新的游离末端,然后外切纤维素酶从多糖链的非还原端切下纤维二糖单位,β-葡萄糖苷酶再

角蛋白酶的降解机理

微生物降解角蛋白的机理各不相同,因此降解过程中的产物也不尽相同。某些真菌还原双硫键是通过菌丝体表面所分泌的亚硫酸盐及其产生的酸性环境;链霉菌则是通过产生胞内还原酶 然而,不溶于水的角蛋白只能以颗粒的形式存在于胞外。因此,双硫键的还原只能发生在代谢能力强的整体细胞外面,最有可能发生在细胞表面的胞联氧化

细胞色素氧化酶的生物化学性质

  细胞色素氧化酶催化的整体反应是:  4 Fe-细胞色素c+ 8 H进 + O2 → 4 Fe-细胞色素c+ 2 H2O + 4 H出  整个催化过程 如下:首先两个电子从两个细胞色素c分子通过CuA和细胞色素a传递到细胞色素a3-CuB双核中心,将中心的金属还原为Fe和Cu。连接两个金属离子的氢

催化活化酵母剪接体的结构揭示了分枝机理

在1977年,Phillip Sharp和Richard Roberts俩个研究组独立发现了剪切这一过程,紧接着,1979年, Steitz研究组发现五种称为U1,U2,U4,U5和U6 snRNA的富含尿苷的小核RNA(snRNA)和7种12-35kDa的蛋白质(snRNPs)。之后,

脂肪酸光脱羧酶催化机理的应用

光酶是一类吸收光子引发结合的底物转化为产物的酶。由于其具有使用短光脉冲在扩散限制催化反应中无法获得的时间尺度上实时识别短寿命中间体的特点,受到基础研究的广泛关注。此外,光酶在绿色化学应用中越来越被认为是有前途的催化剂。目前,已知的天然光酶只有三种不同类型。其中,脂肪酸光脱羧酶(FAP)是一种将脂肪酸

费托合成催化剂助剂的机理研究取得突破

  K助剂是费托合成铁基催化剂不可或缺的组成部分,长期以来国际上对K助剂作用机理的认识一直处于混沌的“黑箱”状态。近日,中国科学院山西煤炭化学研究所、中科合成油技术有限公司的合成油科研团队从理论上阐明了费托合成铁基催化剂的关键助剂K对活性相表面结构的调变作用,这对高性能煤制油催化剂的研制具有重要的指

测定酶催化活性存在的缺陷

测定酶催化活性存在的问题是关于医学检验职称的生化检验知识,医学|教育网搜集整理了相关内容与考生分享,希望给予大家帮助!测定酶的催化活性虽然是临床上最常用的方法,但由于酶的催化活性不仅决定于酶的含量,还受多种因素的影响,如所用底物的性质及浓度、反应介质PH、温度、离子强度、激活或抑制因子等,因此具有方

研究揭示硒酶催化的分子机制

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519853.shtm

酶催化的特点和底物类型

特点一、酶促反应具有极高的效率二、酶促反应具有高度的特异性酶的特异性是指酶对底物的选择性,有以下三种类型:1.绝对特异性 酶只作用于特定结构的底物,生成一种特定结构的产物。如淀粉酶只作用淀粉。2.相对特异性 酶可作用于一类化合物或一种化学键。例如磷酸酶可作用于所有含磷酸酯键的化合物。3.立体异构特异

研究揭示硒酶催化的分子机制

近日,许建强副教授团队揭示了硒酶催化的分子机制,有助于理解胞内抗癌靶点的结构功能,相关成果发表在生物学领域顶刊《氧化还原生物学》。在氧化还原生物学领域里,细胞质型硫氧还蛋白还原酶是维持高等生物细胞内氧化还原平衡的关键硒酶,而导向杆基序在酶功能中发挥重要作用。前期研究发现,导向杆基序在空间上趋近硒酶羧

无花果蛋白酶的催化机制

无花果蛋白酶与底物反应 3 个步骤:快速形成松散的酶底物复合物;酶活性中心的-SH 基被底物的羰基酰化;酰化酶的分解,生成酶与产物。

简述磷脂酶C的催化机制

  PLC的主要催化反应发生在脂质—水界面的不溶性底物上。活性位点中的残基在所有同种PLC中都是保守的。在动物中,PLC在磷酸二酯键的甘油侧选择性地催化磷脂(磷脂酰肌醇4,5-二磷酸(PIP2))的水解,形成酶与底物弱结合的中间体肌醇1,2-环磷酸二酯和释放二酰基甘油(DAG)。然后将中间体水解成肌

酶动力学特征和催化功能

GK作为独特的单体变构酶,与葡萄糖结合后,酶的构象发生改变,新构象有利于后续葡萄糖与酶结合及酶亲和度的提高,希尔系数为1.7(希尔系数>1为正协同,即一个葡萄糖分子与GK结合,GK对其他葡萄糖分子亲和度增加),因而出现同促正协同作用,葡萄糖动力学曲线为“S”型,底物葡萄糖浓度较低时,酶活性增长缓慢,

苏氨酸蛋白酶的催化机制

苏氨酸蛋白酶使用其N端苏氨酸的仲醇作为亲核试剂进行催化。苏氨酸必须是N末端,因为相同残基的末端胺通过极化有序水而起到一般碱的作用,从而使醇去质子化以增加其作为亲核试剂的反应性。催化分两步进行:首先亲核试剂攻击底物形成共价酰基酶中间体,释放xxx个产物。其次,中间体被水水解以再生游离酶并释放第二产物。

简述酶催化技术的经济价值

  用两项高科技对农副产品中的蛋白质进行二度深加工的涉及面广。农副产品包括植产品,林产品,畜产品,水产品等,就是只要人可食用的含有蛋白质的动植物,都可以运用分离纯化技术,将其分离纯化为蛋白质含量在90%以上的高纯蛋白;再用生物工程的生物酶合成技术,进行加工转化为具有极强活性和多样性、具有重要生物学功

木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

淀粉酶催化淀粉水解的原理

酶催化不需要ATP,它降低了反应的活化能,且淀粉酶催化淀粉属于胞外水解。在细胞外进行水解的时候这个过程本身是不消耗能量的, 淀粉酶水解淀粉属于细胞外水解,不消耗能量。

关于催化酶的基本信息介绍

  研究发现,细胞中存在一种酶,它合成端粒。端粒的复制不能由经典的DNA聚合酶催化进行,而是由一种特殊的逆转录酶——端粒酶完成。端粒酶是以RNA 为模板合成DNA 的酶。端粒酶是一种核糖核蛋白,由RNA 和蛋白质构成。其RNA 组分是端粒序列合成的模板。不同生物的端粒酶,其RNA 模板不同,其合成的

丙酮酸的酶催化法简介

  用酶或微生物细胞作催化剂,使葡萄糖或三羧酸循环的某些中间代谢产物,在一定条件下,转化为丙酮酸的技术,称为酶催化法。其主要过程是先进行小规模的微生物培养,菌体收集,直接转化或用载体包埋成固定化酶,然后转化生成丙酮酸。酶催化法设备投资小,能耗低,转化率高,但底物来源较窄、成本比较高约5万元每吨,因此

QM/MM酶催化反应机制研究

酶反应机理研究是化学、生物学中的核心问题之一,长期以来受到广泛关注。不过酶催化反应研究相当复杂,无论实验还是计算模拟都充满挑战,这主要是因为酶反应过程的多尺度特性[1]: 如图1所示,反应底物化学键断裂与生成、蛋白局部氨基酸残基的运动往往在飞秒到皮秒的时间尺度,若要描述溶剂分子例如水的动力学行为至少

​木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

酶作为化学催化剂的特点

酶作为生物催化剂,还具有以下不同于化学催化剂的特点。(1)专一性(specificity) 酶与化学催化剂之间最大的区别就是酶具有专一性,即酶只能催化一种化学反应或一类相似的化学反应,酶对底物有严格的选择。根据专一程度的不同可分为以下4种类型。①键专一性(bond specificity) 这种酶只

木瓜蛋白酶的催化机制

木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。

丝氨酸蛋白酶的催化机制

丝氨酸蛋白酶催化机制的主要参与者是催化三联体。三联体位于酶的活性位点,在那里发生催化作用,并保存在丝氨酸蛋白酶的所有超家族中。三联体是由三个氨基酸组成的协调结构:His57、Ser195(因此得名“丝氨酸蛋白酶”)和Asp102.这三种关键氨基酸均在蛋白酶的切割能力中发挥重要作用。虽然三联体的氨基酸

简述细胞色素氧化酶的生物化学性质

  细胞色素氧化酶催化的整体反应是:  4 Fe-细胞色素c + 8 H进 + O2 → 4 Fe-细胞色素c + 2 H2O + 4 H出  整个催化过程 如下:首先两个电子从两个细胞色素c分子通过CuA和细胞色素a传递到细胞色素a3-CuB双核中心,将中心的金属还原为Fe和Cu。连接两个金属离子