“自闭”的果蝇帮助科学家认识孤独症病理机制

小小的果蝇也会“自闭”吗?它会帮助科学家解开孤独症发病机理的谜团吗?记者26日从南京医科大学获悉,该校刘星吟教授课题组从果蝇身上发现,KDM5家族蛋白功能的丧失,会导致肠屏障功能受损和与肠道微生态失调,并出现社交行为异常。该成果近日在Cell子刊《细胞宿主与微生物》发表。 一直以来,人们对孤独症的研究主要集中于寻找遗传因素,以及相应引起的神经发育异常。其实许多孤独症病人身上常伴随肠道症状(比如便秘、腹胀、腹泻、肠易激综合症等)。与此相吻合,有不少研究发现,孤独症与肠道微生物群落的失衡密切相关。 于是,研究人员就把眼光放到了果蝇的肠道内环境来进行探究,他们发现,使果蝇的KDM5缺失之后,会造成果蝇的固有免疫被过度激活,会过度产生抗菌肽等“抗菌部队”,导致肠道菌群紊乱。 “而有部分的菌群代谢产物,是参与到果蝇的神经递质合成的,因而一旦菌群紊乱,也就影响到了它的社交行为。”刘星吟说。实验中,KDM5缺失的果蝇出现同类交流保持......阅读全文

“自闭”的果蝇帮助科学家认识孤独症病理机制

  小小的果蝇也会“自闭”吗?它会帮助科学家解开孤独症发病机理的谜团吗?记者26日从南京医科大学获悉,该校刘星吟教授课题组从果蝇身上发现,KDM5家族蛋白功能的丧失,会导致肠屏障功能受损和与肠道微生态失调,并出现社交行为异常。该成果近日在Cell子刊《细胞宿主与微生物》发表。  一直以来,人们对孤独

中加科学家发现孤独症致病基因参与突触发育

为孤独症发生的分子神经生物学机制提供重要线索  作为目前世界上患病人数增长最快的疾病之一,孤独症越来越受关注,但其发病机理依旧是一个谜团,存有争议。日前,美国《神经科学杂志》(The Journal of Neuroscience)发表了东南大学生命科学研究院研究组和加拿大多伦多大学鲍利安

果蝇实验技术

一、实验原理 果蝇(fruit fly)是双翅目(Diptera)昆虫,属果蝇属(genus Drosophila),约有2500个种。通常用作遗传学实验材料的是黑腹果蝇(Drosophila melanogaster)。果蝇优点: 1. 饲养容易。在常温下,以玉米粉等作饲料就可以生长,繁殖。 2.

Nature:孤独症治愈新希望

  孤独症谱系障碍ASD的症状包括社交技能减弱、交流能力受损和重复性行为等。日前,研究人员在ASD小鼠实验中,成功使大脑中过量的蛋白合成回复正常,治愈了小鼠的上述孤独症行为。相关文章发表在最近一期的Nature杂志上。   孤独症是一种通常起病于3岁之前,以明显的社会交往障碍、言语沟通异常以及刻板

Nature:绘制孤独症神经通路

  研究人员发现剔除小鼠小脑的一个基因就能引发孤独症关键症状,而免疫抑制剂雷帕霉素rapamycin能抵消这些症状。   该基因是一种罕见遗传疾病结节性硬化症(TSC)的相关基因。TSC患者中有近一半会患上孤独症,研究人员认为他们的发现能更好的帮助人们了解这一疾病的发生和发展。文章发表在7月1日的

果蝇数量性状实验

【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状

果蝇数量性状实验

【实验目的】 1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。 2、学习估算遗传(heritability)【实验原理】   在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)

果蝇数量性状实验

【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状

果蝇数量性状实验

【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状

果蝇数量性状实验

【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状

果蝇做菜你敢吃吗?以色列推出果蝇蛋白粉

  蛋白质是最重要也是最贵的营养物质之一。以色列一家初创企业表示,果蝇幼虫可以生产出大量既经济又安全的蛋白质。  从营养学的角度来看,果蝇幼虫富含蛋白质、钙、铁、镁等营养要素,而且不含胆固醇,是一种非常健康的食材。另外果蝇还具有培养周期短、速度快的特点,与其他昆虫相比,果蝇的饲养成本也十分低廉。  

尿检可用于诊断儿童孤独症

    科学家新近发现,通过尿检也可判断儿童是否患孤独症。  尽管儿童孤独症及相关紊乱症患儿的比例如今在全球已达到5%-7%。,但在临床诊断环节依旧存在诸多障碍,缺乏一套完善的化学检验方法。  而最近,英国的一项针对一批孤独症儿童展开尿检后发现,孤独症儿童尿检中可检测出某种菌群留下的特殊化学记号。 

研究发现治疗孤独症的靶标

  据发表在最近一期的《Nature》杂志上报道,日前,研究人员在ASD小鼠实验中,成功使大脑中过量的蛋白合成回复正常,治愈了小鼠的上述孤独症行为。“开发一种药物治疗孤独症谱系障碍并不容易,而我们的发现为人们提供了一条颇有潜力的途径,”文章资深作者,纽约大学神经科学中心的EricKlann教授说。“

果蝇体内发现瘦素

    当谈到脂肪,果蝇比你想象的更像人类。   研究人员已经发现,这种昆虫能够大量炮制一种名为瘦素的激素——类似的激素在人体中能够有助于控制食欲和新陈代谢。  瘦素的发现在研究人员中引起了强烈的兴趣——在此之前,他们认为只有脊椎动物才能够分泌瘦素。这一发现为更好地了解瘦素的功效敞开

果蝇也会“触景伤身”

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502849.shtm

果蝇唾腺染色体

实验三 果蝇唾腺染色体【实验目的】1.练习取出果蝇幼虫的唾腺和制作唾腺染色体标本的方法与技术。2.观察和识别多线染色体的特征:a.巨大,多线;b.染色体配对,染色体只有体细胞的半数(n);c. 染色体含异染色质多的着丝粒部分互相靠 拢 ,形成染色中心(chromo center) ;d.横纹有深、浅

果蝇的伴性遗传

实验概要1、正确认识伴性遗传的正、反交的差别,进一步认识伴性遗传的特点。  2、记录杂交结果,掌握统计处理方法。实验原理位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传(sex-linked

研究发现儿童孤独症染色体变异

  11月5日,国际顶尖精神病学杂志《分子精神病学》(Molecular Psychiatry)以“原创论文”的形式,在线发表了我国科学家关于儿童孤独症研究的最新成果。该研究采用全基因组关联研究(GWAS)方法,成功在 1号染色体位置发现了和孤独症发病相关的基因变异,并鉴定了几个可能的易感基

孤独的证据,难以挽救孤独症的孩子

许多孤独症儿童的家长花费了极大的心血,多年如一日地坚持为孩子做干预,改善孩子的心智状况。有些人效果好,有些人效果一般,一切仿佛是命运的安排。他们不知道,所有这些疗法,都尚未得到严格临床证据的支持。 编译 | 小叶二十年前,Andrew Whitehouse还是一名言语治疗师,他不记得自己接诊过多少名

日发现果蝇避免不育机制

  日本研究人员日前报告说,他们发现在雄性果蝇体内存在一种调节机制,可以通过有效增加精原干细胞来避免不育。这一发现有望给不育病理和疗法研究提供新思路。   日本基础生物学研究所教授小林悟领导的研究小组发现,在雄性果蝇精巢前端的精原干细胞微环境中,存在一种特殊细胞,只有与它们邻近的原

小规模快速制备果蝇RNA

小规模快速制备果蝇RNA             试剂、试剂盒 Northern 样品缓冲液  lmol L 乙酸

小规模快速制备果蝇RNA

试剂、试剂盒 Northern 样品缓冲液 lmol L 乙酸 酚氯仿 DEPC 处理的水 GHCL 溶液 无水乙醇实验步骤 一 材料与设备1)Northern 样品缓冲液:2.2mol/L 甲醛,1mol/LMOPS,50% 甲酰胺2)lmol/L 乙酸3) 酚:氯仿(1:1)4)DEPC 处理的

Cell:果蝇如何趋利避害?

  有时候,冰箱里的水果烂了。一打开冰箱门,腐烂气味扑面而来,令人作呕。这种厌恶的感觉并非人类特有,果蝇也有。研究人员近日在《Cell》杂志上发表文章,将果蝇中的这种反应归结为一个名为土臭素(geosmin)的分子。   果蝇喜欢在醋、酒、发酵的水果上生长和产卵。但是当水果开始腐烂时,链球菌和青霉

癌症、果蝇与EGFR的关系

  癌症和果蝇的腿有什么共同之处?你可能一时半会儿回答不上来。答案是它们都受到同一种分子的调控。这种蛋白质几乎存在于地球上的每一种生物中,它就是表皮生长因子受体(EGFR)。  如今,哥伦比亚大学的神经科学家确定了EGFR在动物胚胎发育过程中的各种作用,从四肢发育到癌症增殖。这项新成果发表在《PLO

人工复眼功能堪比果蝇

  对于许多动物而言,复眼为它们提供了欣赏外界的窗口,虽然复眼的分辨率低于脊椎动物的单透镜眼的分辨率,但它却为动物提供了更加广阔的视野。近日,科研人员公布了一种微型人工复眼的原型,它类似于果蝇和其他节肢动物的复眼。   复眼能让昆虫和其他节肢动物同时追踪多个方向的迅速运动,而由其产生的失真和球面像

首个果蝇细胞衰老图谱公布

  了解身体如何衰老是一个重要的研究领域。美国贝勒医学院、斯坦福大学等机构研究人员在《科学》杂志上发表了首个果蝇细胞衰老图谱(AFCA),详细描述了果蝇中163种不同细胞类型的衰老过程。  分析表明,体内不同细胞的年龄不同,每种细胞类型的衰老过程都遵循特定的模式。AFCA为衰老研究提供了宝贵的资源,

果蝇发育调控可视化

生命科学最大魅力是纷繁复杂的生物形式,而其中极具挑战的科题之一是多细胞生物的发育调控。在多细胞个体遗传调控研究中,科学家经常使用一种看似不起眼但又被广泛使用的模式动物——果蝇 (Drosophila ontogenesis) [1]。遗传级联遗传调控指导受精卵单细胞发育成复杂多细胞生物体。虽然每个细

果蝇白眼突变基因的克隆

【实验目的】掌握T克隆的原理和方法。了解质粒提取的原理和方法。【实验原理】外源DNA与载体分子的连接就是DNA重组,这样重新组合的DNA叫做重组体或重组子。重组的DNA分子是在DNA 连接酶的作用下,有Mg2+ 、ATP存在的连接缓冲系统中,将载体分子与外源DNA分子进行连接。Taq DNA

《自然》:果蝇也爱碳酸饮料

盘旋在厨房的果蝇可能更容易被正在变成棕色的香蕉所吸引,或它还想喝上你的一口汽水。在8月30日的《自然》杂志上,来自美国加州大学伯克力分校的研究人员发表的文章报道说,果蝇能侦测并被溶解在水里的二氧化碳的味道所吸引。果蝇能尝二氧化碳的能力可能帮助它寻找更有营养的食物。这项研究由美国NIH隶属的失聪和其他

果蝇的伴性遗传实验

实验方法原理 果蝇的红眼与白眼是一对由性染色体上的基因控制的相对性状。用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代相互交配,F2代则雌性均为红眼,雄性红眼:白眼=1:1;相反用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼,F1相互交配得F2代,雌蝇红眼与白眼比例为1