多光子共聚焦扫描显微镜的原理以及应用

多光子共聚焦显微镜是光学显微镜的重大改进,主要表现为可以观察活细胞、固定细胞和组织的深层结构,并且可以得到清晰锐利的多层Z平面结构,即光学切片,并以此可以构建标本的三维实体结构。共聚焦显微镜采用激光光源,经过扩充后充满整个物镜后焦平面,然后经过物镜的透镜系统,在标本的焦平面上会聚成非常小的点。根据物镜数值孔径不同,最亮照明点直径大小约0.25 ~ 0.8μm,深度约0.5 ~ 1.5μm。共聚焦点大小决定于显微镜设计、激光波长、物镜特性、扫描单元状态设定和标本性质。场式显微镜的照明范围和照明深度都很大,而共聚焦显微镜的照明则集中到焦平面上的一个精确的焦点上。共聚焦显微镜最基本的优点是可以对厚荧光标本(可以达到50 μm或以上)进行精细的光学切片,切片的厚度约为0.5到1.5μm。系列光学切片图像可以通过精确的显微镜Z轴步进马达上下移动标本获得。图像信息的采集被控制在精确的平面内,而不会被位于......阅读全文

多光子共聚焦扫描显微镜的原理以及应用

多光子共聚焦显微镜是光学显微镜的重大改进,主要表现为可以观察活细胞、固定细胞和组织的深层结构,并且可以得到清晰锐利的多层Z平面结构,即光学切片,并以此可以构建标本的三维实体结构。共聚焦显微镜采用激光光源,经过扩充后充满整个物镜后焦平面,然后经过物镜的透镜系统,在标本的焦平面上会聚成非常小的点。根据物

共激光扫描共聚焦显微镜

共激光扫描共聚焦显微镜(Laser scanning confocal microscope,LSCM)是一种先进的分子生物学和细胞生物学研究仪器。它在荧光显微镜成像的基础上加装激光扫描装置,结合数据化图像处理技术,采集组织和细胞内荧光标记图像,在亚细胞水平观察钙等离子水平的变化,并结合电生理等技术

LaVision双光子显微镜多线扫描双光子成像(二)

2. 方法与结果    为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神

LaVision双光子显微镜多线扫描双光子成像(三)

2.2.多线TPLSM中通过成像检测释放光    在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠

LaVision双光子显微镜多线扫描双光子成像(四)

2.3. 多线TPLSM中的获取模式    我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧

LaVision双光子显微镜多线扫描双光子成像(一)

Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi

共聚焦激光扫描显微镜的应用

膜电位 以往测定膜电位多用微电极直接插入法测量,不仅操作麻烦,而且对细胞也是一种损伤。共聚焦激光扫描显微镜则可利用荧光探针在细胞膜内外分布的差异测出膜电位,不但可以观察细胞膜电位的变化结果,更重要的是可以用于连续监测膜电位的迅速变化。膜电位荧光探针根据其对膜电位变化反应速度的快慢分为快、慢两类探针,

激光扫描共聚焦显微镜的应用

  应用功能  激光扫描共聚焦显微镜(Confocal laser scanning microscope,CLSM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活

共聚焦扫描显微镜的成像原理

  采用点光源照射标本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到由双向色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。两者的几何尺寸一致,约100-200nm;相对于焦平面上的光点,两者是共

双光子共聚焦显微镜

双光子共聚焦显微镜是为了解决生物检测中样品染料标记的光漂白现象而提出的,因为共焦孔径光阑必须足够小以获得高分辨率的图像,而孔径小又会挡掉很大部分从样品发出的荧光,包括从焦平面发出的荧光,这样就要求激发光必须足够强以获得足够的信噪比;而高强度的激光会使荧光染料在连续扫描过程中迅速褪色(即光漂白现象),

与单光子共焦显微镜相比,双光子共焦显微镜有何优点

  双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒

与单光子共焦显微镜相比,双光子共焦显微镜有何优点

  双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒

与单光子共焦显微镜相比,双光子共焦显微镜有何优点

  双光子共焦显微镜具有许多突出的优点:双光子共焦显微镜可以采用波长比较长的、在生物组织中穿透能力比较强的红外激光作为激发光源,因此可以解决生物组织中深层物质的层析成像问题。由于双光子荧光波长距离发光波长,因此双光子共焦显微镜可以实现暗场成像。双光子可以避免普通成像中的荧光漂白问题和生物细胞的光致毒

激光扫描共聚焦显微镜技术原理

光学显微镜作为细胞生物学的研究工具,可以分辨出小于其照明光源波长一半的细胞结构。随着光学、视频、计算机等技术飞速发展而诞生的激光扫描共聚焦显微镜 (Laser Scanning Confocal Microscope,LSCM),则使现代显微镜有能力研究和分析细胞在变化过程中的结构。特别是

激光扫描共聚焦显微镜的结构原理

激光扫描共聚焦显微镜(Confocal laser scanning microscope,简称CLSM)是近代生物医学图象仪器。它是在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针。利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如

激光扫描共焦显微镜技术及应用

l 样品要求:1.经荧光探剂标记(单标、双标、三标)2.固定的或活的组织3.固定的或活的贴壁培养细胞(Confocal专用小培养皿,盖玻片)4.悬浮细胞,甩片或滴片后,用盖玻片封一. 组成倒置或直立荧光显微镜、扫描头(照明针孔、探测针孔、荧光滤片系统、镜扫描系统和光电倍增管)、扫描头控制电路、计算机

光子扫描隧道显微镜探针的研制和应用

    研究光子扫描隧道显微镜(PSTM)探针的研制和PSTM探针在distearyl3,3’-thiodipropionate自组装分子膜STM研究中的应用。PSTM探针是既能传输电子又能传输光子的多功能扫描探针。它能够应用到STM上通过传输电子获得和金属探针一样效果,又能应用到近场光学显微镜上获

Thorlabs多光子显微镜基本套件及应用

MPM-2PKIT多光子基本套件是Thorlabs公司为想要自己搭建多光子成像系统的研究人员提供的解决方案,在量身定制的同时又不牺牲成像的性能。该套件包含一个模块化多光子成像系统所必须的核心部件,为特定应用而配置。此外,该系统无需传统显微镜,即可以对大样品,如整个活体生物等进行成像,并且该设计减小了

多光子显微镜成像技术:多光子显微镜用于体内神经元...

多光子显微镜成像技术:多光子显微镜用于体内神经元成像的多种技术与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高

共聚焦激光扫描显微镜的应用pH值

pH值正常细胞胞浆内的pH一般在6.8~7.4的范围,而某些细胞器如溶酶体的pH则在4.5~6.0之间。根据检测对象pH的不同将荧光探针分为用于偏中性和酸性两类。常用于偏中性pH即细胞胞浆pH检测的荧光探针有SNARF类(SNARF-1、SNARF-calcein)、SNAFL类(SNAFL-1、S

共聚焦激光扫描显微镜的应用pH值

pH值正常细胞胞浆内的pH一般在6.8~7.4的范围,而某些细胞器如溶酶体的pH则在4.5~6.0之间。根据检测对象pH的不同将荧光探针分为用于偏中性和酸性两类。常用于偏中性pH即细胞胞浆pH检测的荧光探针有SNARF类(SNARF-1、SNARF-calcein)、SNAFL类(SNAFL-1、S

激光扫描共焦显微镜技术及应用(一)

样品要求:经荧光探剂标记(单标、双标、三标)2.固定的或活的组织3.固定的或活的贴壁培养细胞(Confocal专用小培养皿,盖玻片)4.悬浮细胞,甩片或滴片后,用盖玻片封一. 组成倒置或直立荧光显微镜、扫描头(照明针孔、探测针孔、荧光滤片系统、镜扫描系统和光电倍增管)、扫描头控制电路、计算机和图像输

激光扫描共焦显微镜技术及应用(二)

五、激光扫描共焦显微镜技术的应用定位、定量三维重组动态测量¨ 活细胞或组织内游离Ca2+浓度的测量¨ 活细胞内H+浓度( pH值)的测量¨ 自由基的检测¨ 药物进入细胞的动态过程、定位分布及定量 应用:细胞膜电位的测量      荧光漂白恢复(FRAP)的测量      笼锁解笼锁的测量     

共聚焦的共焦显微

共焦显微技术是由美国科学家M.Minsky在1957年提出的,当时的主要目的是消除普通光学显微镜在探测样品时产生的多种散射光。20世纪60年代通过提高扫描精度突破了普通宽场成像的分辨率限制,在20世纪80年代研制成商用共焦显微镜。共焦显微镜分为普通光照明激发和激光照明激发两种类型,而以后者应用最为广

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

聚焦激光扫描显微镜

聚焦激光扫描显微镜(confocallaser scanning microscopy,CLSM)是生物医学实验室中重要的仪器设备,可以检测细胞甚至分子水平的改变,1995年美国学者在传统共聚焦激光扫描显微镜基础上加上在体扫描装置,实现了皮肤上的在体共聚焦成像,这是一种在皮肤原位、无创、细胞水平的成

激光扫描共聚焦显微镜技术的主要应用范围

三者都是点源逐点扫描成像,通过控制扫描驱动范围,调节放大倍数,主要区别1、极限分辨率不同,缘于放大信号源的差异激光共聚焦:极限分辨率150nm.扫描电镜:20nm~0.8nm.原子力显微镜:极限分辨率0.1nm2、扫描驱动方式不同激光共聚焦:激光转镜控制激光扫描范围和扫描速度。扫描电镜:电磁线圈控制

激光扫描共聚焦显微镜在医学领域的应用

  在大脑和神经科学中的应用  激光扫描共聚焦显微镜分层扫描发现神经轴突的内部结构连续性好。用激光扫描共聚焦显微镜能观察到脑干组织中神经轴突的正常走向,可排除在荧光显微镜下由此造成的一些病理假象。并且激光扫描共聚焦显微镜能观察神经轴突的三维结构,因此应用 CLSM 有可能观察到普通光镜下未能发现的神

激光扫描共聚焦显微镜的应用功能简介

  激光扫描共聚焦显微镜(Confocal laser scanning microscope,CLSM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、