为什么大脑神经元时刻在给DNA做手术

约翰霍普金斯的科学家们发现,神经元们都是冒险家:它们整天,利用微小的"DNA手术"来切换它们的活性。由于这些活性水平对于学习,记忆和大脑疾病都很重要,研究人员们认为,他们的发现将对一系列重要的问题有所解释。这项研究在线发表于4月27日的Nature Neuroscience杂志上。 "我们过去常常认为,一旦一个细胞完全成熟了,它的DNA就是完全稳定的,包括连接到它上面的分子标记,以控制它的基因和维持细胞的身份,"约翰霍普金斯医学院细胞工程系,神经学和神经科学教授Hongjun Song博士说。"这项研究表明,事实上,一些细胞总是在改变它们的DNA的,从而来完成其日常功能。" 这种DNA的改变被称为DNA去甲基化。甲基集团是永久连接在胞嘧啶上的调节性标记,胞嘧啶即DNA4个字母表中的C。去除这些甲基集团是一个多步骤的过程,需要从形成染色体的一长串配对的"字母"上切去被标记的胞嘧啶,理想情况下,再用一段未标记的胞嘧啶所替代。......阅读全文

突触的含义以及横过突触空隙传递神经讯号的步骤

突触(synapse)是神经纤维间的连繫。所有的神经纤维都是以轴突末稍(dendrite)连到其它神经纤维的树突末稍(axonbrush)。而且在轴突末稍和树突末稍间留有一个空隙,称为突触空隙(synspticcleft)。如下图所示。  横过突触空隙传递神经讯号的步骤: (1)神经讯号到达轴突末稍

《Science》极早期发育时期惊现神经突触

  大脑新皮层(cerebral neocortex)掌权人脑功能,如有意识的思维和语言。在新皮层中,数十亿神经元被精确排列成有序的6层结构。在婴儿时期,这些神经元有次序地生成,再迁移至大脑表面。  “亚板神经元(subplate neurons)”是新皮层首批出现的神经元之一,它们在新皮层发育时短

Nature惊人发现:神经元通讯无需突触

  十一月二十一日的Nature杂志上发表了一项新研究,显示果蝇触须中相邻的嗅觉神经元可以相互阻断,即使二者并没通过突触直接相连。这种通讯手段被称为ephaptic coupling,神经元通过电场使其邻居沉默,而不是通过突触传递神经递质。   “Ephaptic coupling这一理论

清华研发出首个人工神经突触

  让电脑像人类的大脑一样学习和记忆是一个令科研人员望而却步的挑战。因为人类的大脑拥有850亿个神经元和数万亿个神经突触,而且这些神经突触具有很强的可塑性,可以随着时间的变化自我调整,变得更强或更弱。   不过,据物理学家组织网11月12日报道,清华大学信息科学与技术国家实验室的科研人员近日在美国化

神经突触仿生器件研制成功

  记者日前从东北师范大学获悉,在国家自然科学基金及国家重大科学研究计划的资助下,该校刘益春研究组利用InGaZnO材料,构造了具有自主学习和记忆能力的神经突触仿生器件,在单一无机器件中实现了多种生物突触功能。相关成果发表在国际学术期刊《先进功能材料》上,并被选为标题页文章进行了重点报道。   据

离体神经突触的代谢性标记实验

mRNA 和 rRNA 存在于树突和轴突内(VanMinnen1994;Steward1997)。令人疑惑不解的是,位于胞体外区域的 mRNA 是否真的被翻译。下面的方法可以证明神经突起确实可以不依赖胞体而合成蛋白。现代神经科学研究技术作者:U.Windhorst & H. Johansson  翻

离体神经突触的代谢性标记实验

            试剂、试剂盒 固定剂 温育液 氯霉素 放射自显影乳剂 显影剂 SDS样本缓冲液 实验步骤

中国科研人员解密神经突触“黑匣子”

  记者10日从中国科学技术大学获悉,该校科研人员在利用冷冻电镜解析神经突触超微结构方面取得突破,解密了神经突触“黑匣子”。  国际学术期刊美国神经科学学会会刊《神经科学期刊》(《Journal of Neuroscience》)近日以封面形式报道了该项研究成果。  突触是大脑行为、意识、学习与记忆

离体神经突触的代谢性标记实验

试剂、试剂盒 固定剂温育液氯霉素放射自显影乳剂显影剂SDS样本缓冲液实验步骤 一、放射自显影神经元在条件培养基中培养 2d,如第十章所述。1.用一个锋利的微电极从胞体分离神经突起,并用牵引电极将胞体移出培养皿 (见第十章)。2.在培养液中加入终浓度 0.lmmol/L 氯霉素,阻断线粒体蛋白的合成。

突触核蛋白抑制磷脂酶D2的活性

  Jenco等在体外研究发现牛脑中含有一种热稳定因子能够抑制磷脂酶D2的活性,最后证明该因子为与α、β突触核蛋白混合结构的同系物[23];磷脂酶D2能够催化卵磷脂的水解并且表现出调节细胞骨架的重组和质膜的内吞,因此α-突触核蛋白可以影响细胞膜的结构和稳定性。

遗传发育所揭示神经突触稳态调控新机制

  突触是掌管神经系统信号传递的关键结构。成年大脑中突触的结构可塑性,即突触的形成和消失,被认为是长期记忆形成的基础。长时程在体成像观察表明:中枢神经系统中大部分轴突或树突以及突触的结构相当稳定,但受伤、丰富环境培养或长时间的感觉刺激会导致轴、数树突分支的产生和消失,这种产生和消失往往伴随着新突触的

遗传发育所发现神经突触发育的调控机制

  神经突触是高度特化的细胞间连接,负责神经元与其靶细胞之间的信息传递。对突触形成和生长发育进行深入研究,不仅有利于阐明大脑发育和功能的分子机制,而且可以加深对相关神经精神疾病发病机制的认识。已知BMP(bone morphogenetic protein:骨形成蛋白)信号通路对多种组织器官包括大脑

中国科学家发现大脑神经突触删除机制

  浙江大学医学院神经科学研究所汪浩研究员和段树民院士合作研究发现,三磷酸腺苷(ATP)可以识别大脑中不需要的神经突触,在大脑中按下“删除键”。  该研究成果4月12日刊登在生命科学领域知名期刊《生命科学在线》(《eLife》)上。  一个健康的成年人的大脑中约有860亿个神经元,神经元之间接触的结

利用冷冻电镜成功解析神经突触超微结构

  记者从中国科大获悉,该校合肥微尺度物质科学国家研究中心与生命科学学院毕国强、刘北明与周正洪教授合作课题组的研究成果——利用冷冻电子断层三维重构技术(cryoET)与冷冻光电关联显微成像技术解析神经突触超微结构。图片来源网络  2月7日,美国神经科学学会会刊《神经科学杂志》以封面形式报道了这一成果

中美学者利用冷冻电镜成功解析神经突触

  记者近日从中国科学技术大学获悉:该校科学家在国际上首次利用冷冻电镜技术对完整神经突触进行系统性定量分析,既推动了对突触超微结构与功能这一“黑匣子”的解密,又为突破冷冻电镜技术在复杂细胞体系中原位解析生物大分子复合物的组织结构这一技术难题奠定了基础。成果于日前以封面论文形式发表在国际学术期刊《神经

神经所发现炎性转录因子在神经肌肉接头突触形成中的作用

神经所研究发现炎性转录因子NFkappaB在神经肌肉接头突触形成中的作用   p65基因敲除引起小鼠神经肌肉接头异常  8月19日,《神经科学杂志》(The Journal of Neuroscience)发表了中国科学院上海生命科学研究院神经科学研究所的研究成果:“NFkappaB

遗传发育所神经突触发育研究取得新进展

  神经突触是神经元之间进行信息交流的特化结构。长期以来,神经突触的发育与重塑是神经科学研究的核心科学问题。突触重塑是生物个体发育过程中神经环路的形成以及生物对生理和(或)环境变化的适应过程中普遍存在的生物学现象。同时,突触重塑的异常会导致许多重要的神经疾病。然而,我们对突触重塑的分子

环球科技参考:美国研制出硅基人工神经突触

  据美国麻省理工学院(MIT)网站日前报道,该校科研人员用单晶硅成功制作出了人工神经突触,这将大大促进人工智能硬件的发展。  “神经形态计算”这个新兴领域的研究人员曾试图设计出像人脑一样工作的计算机芯片。不同于今天的数字芯片,需在二进制、开/关信号的基础上进行计算,“芯片上的大脑”的元件将以模拟的

Nat-Commun:新技术可观测到神经突触中的单个蛋白

  我们的大脑包含数百万个突触-这些连接在神经元之间传递信息。在这些突触中有数百种不同的蛋白质,这些蛋白质的功能障碍会导致精神分裂症和自闭症等疾病的发生。  最近,麻省理工学院以及哈佛大学和麻省理工学院的研究人员现在已经设计出一种新方法,可以以高分辨率对这些突触蛋白快速成像。使用荧光核酸探针,它们可

早期丰富环境饲养促进GABA能突触传递及神经环路成熟

     早期丰富环境饲养对GABA能突触传递及神经环路成熟的促进   6月9日,《神经科学杂志》发表了中国科学院上海生命科学研究院神经科学研究所树突发育与神经环路形成研究组的成果Early enriched environment promotes neonatal GABAergic n

张永清PLoS-Genetics解析神经突触发育调控新机制

  神经突触是高度特化的细胞间连接,负责神经元与其靶细胞之间的信息传递。对突触形成和生长发育进行深入研究,不仅有利于阐明大脑发育和功能的分子机制,而且可以加深对相关神经精神疾病发病机制的认识。已知BMP(bone morphogenetic protein:骨形成蛋白)信号通路对多种组织器官包括大脑

研究发现:大脑中有一种能塑造神经突触的分子

  据每日科学12月9日报道,一个美德联合科研小组发现,大脑中有一种分子不仅能连接脑细胞,还能改变人们的学习方式。该研究由美国国家卫生研究院和一家慈善组织资助,研究成果发表在12月9日出版的《神经元》杂志上,有助于研究人员找到提高记忆的方法,并用于治疗神经错乱。   脑细胞之间的连接称为突触,可以

重要发现:突触后受体聚集、神经肌肉接头形成的新机制

  我们日常生活中的每一个活动如走路、吃饭、喝水、呼吸甚至静坐都离不开肌肉收缩。控制肌肉离不开人体里一个叫神经肌肉接头的结构,这是一个运动神经元与骨骼肌纤维之间的链接(神经科学上叫突触)。神经肌肉接头是一个化学突触,运动神经元膜稍释放乙酰胆碱,后者激活肌肉细胞膜上的乙酰胆碱受体产生电位变化,这样就把

陈宜张著作《突触》:研究“突触”的一块基石

   读陈宜张院士沉甸甸的学术著作《突触》,我们深切感受到的是一位老科学家在科学征程上执着追求的赤诚。陈宜张已87岁,成就卓著,仍没有懈怠,辛勤耕耘,在独立出版54万字的《神经科学的历史发展与思考》五年之后,又以一人之力推出大作《突触》。其为神经科学传道授业的热忱,不能不让我们这些学界晚辈为之汗颜。

瘦素可促进突触形成或突触发生

  瘦素这种激素以调节食欲而闻名,如今证据表面,它似乎会影响神经元的发育——这一发现可能有助于解释诸如自闭症等与功能失调的突触形成有关的疾病。  瘦素是一种由成人体内脂肪细胞释放的激素,研究人员主要关注它是如何控制食欲的。在5月18日发表在《科学信号》(Science Signaling)杂志上的一

中美学者用冷冻电镜解析大脑神经突触“黑匣子”

  突触是大脑行为、意识、学习与记忆等功能的基本结构与功能单元,也是多种脑疾病发生的起源。近期,中国科学技术大学教授毕国强、刘北明与美国加州大学洛杉矶分校教授周正洪组成课题组,利用冷冻电镜技术对完整突触进行了系统性定量分析。美国神经科学学会会刊《神经科学》日前以封面形式对此进行了报道。  精确解析突

神经所研究发现突触可塑性长时期维持的分子机制

  3月2日,《神经科学杂志》(The Journal of Neuroscience)发表了中科院上海生命科学研究院神经所神经元信息处理和可塑性研究组关于突触可塑性长时期维持的分子机制的最新发现。  外界刺激引起的神经细胞持续的活动可以诱导突触传递的长时程改变,这一现象称之为长时程

构建基于单纯疱疹病毒新型顺向跨突触神经环路示踪工具

  解析大脑不同脑区、不同类型神经元之间的神经环路连接是神经科学研究的重要任务之一,病毒工具是目前最为有效、应用最广的神经环路示踪工具。但目前用于研究输出神经环路的顺向示踪工具病毒发展较慢,用于精细研究直接输出网络的顺向跨单级工具更是尚无研究报道。近日,中国科学院武汉病毒研究所研究员罗敏华学科组与武

基于单纯疱疹病毒的新型顺向跨突触神经环路示踪工具

  解析大脑不同脑区、不同类型神经元之间的神经环路连接是神经科学研究的重要任务之一,病毒工具是目前最为有效、应用最广的神经环路示踪工具。但目前用于研究输出神经环路的顺向示踪工具病毒发展较慢,用于精细研究直接输出网络的顺向跨单级工具更是尚无研究报道。近日,中国科学院武汉病毒研究所研究员罗敏华学科组与武

实现自驱动柔性器件神经刺激和突触可塑性度量

  日前,中国科学院深圳先进技术研究院脑认知与脑疾病研究所詹阳课题组同电子科技大学薛欣宇、张岩课题组合作,构建出基于摩擦电效应的柔性电子皮肤,可以实现无电池、自驱动的电刺激并引起神经响应。相关研究成果Self-powered, wireless-control, neural-stimulating