南京古生物所等种子植物胚珠器官同源研究获进展

种子植物胚珠器官同源问题是植物演化生物学最核心的科学问题之一,也是重建包括化石类群在内的种子植物系统发育的基础。然而,种子植物五大现生类群:苏铁、银杏、松柏、买麻藤和被子植物的胚珠器官形态迥异,如何认识和理解它们的胚珠器官结构的同源性,一直是个悬而未决的难题。而已绝灭的化石类群作为现生类群系统发育关系的“缺失环节”,是解决这一难题的关键。 中生代种子蕨是一类已绝灭的种子植物,它们具有类似蕨类的叶片但同时又结有种子,种子被壳斗不完全包被。包括盾籽植物、开通植物和盔籽植物在内的中生代种子蕨和二叠纪的舌羊齿类一起,被认为是了解种子植物系统发育和被子植物起源的关键类群。不同时期它们都曾被当作被子植物的祖先类群或姊妹群,并由此衍生出被子植物心皮如何演化的不同假说。 最近,由中国科学院南京地质古生物研究所博士史恭乐领衔的一个国际合作团队研究了产自蒙古国早白垩世地层的盔籽植物胚珠器官化石,据此提出了盔籽包裹种子的壳斗同源问题的新观点。......阅读全文

南京古生物所等种子植物胚珠器官同源研究获进展

  种子植物胚珠器官同源问题是植物演化生物学最核心的科学问题之一,也是重建包括化石类群在内的种子植物系统发育的基础。然而,种子植物五大现生类群:苏铁、银杏、松柏、买麻藤和被子植物的胚珠器官形态迥异,如何认识和理解它们的胚珠器官结构的同源性,一直是个悬而未决的难题。而已绝灭的化石类群作为现生类群系统发

控制植物胚珠发育的重要机制

  植物的种子是人类和动物的重要食物来源,而种子是从受精后的胚珠发育而来的。植物的胚珠由多种细胞和组织组成,其中包括最为重要的种系细胞(germline cell)。研究植物胚珠的发育过程的分子调控机理以及其中的种系细胞的命运决定机制一直是植物生物学领域的研究热点。1999年,科学家们通过遗传学方法

小麦胚珠和胚囊的发育及胚珠类型

雌蕊是花的结构中另一重要组成部分。被子植物的胚珠着生于雌蕊的子房中而受到良好保护。在胚珠中产生胚囊母细胞。由胚囊母细胞通过减数分裂产生大孢子,大孢子的染色体数目为胚囊母细胞染色体数目的一半,为单倍体,这也是一次无性生殖过程。然后,由大孢子发育成胚囊,成熟胚囊即雌配子体。由于参与胚囊发育的大孢子数目的

科研人员揭示高温下植物种子前身胚珠命运的保护机制

  北京大学生命科学学院秦跟基教授课题组在Nature子刊Nature Communications上在线发表了题为“Arabidopsis TCP4 transcription factor inhibits high temperature induced homeotic conversion

高温下植物种子前身胚珠命运的保护机制获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/509313.shtm2023年夏天全球平均气温再创新记录,高温频次也逐年增加。高温强度和频次的增加不仅造成严重的粮食减产和世界粮食安全问题,也使动植物的生存面临严峻挑战。高温已成为科学家和各国政要们共同关

胚珠的类型

胚珠的类型 常见的有下列数种:直生胚珠 (atropous ovule或orthotropus ovule):胚珠各部分均匀生长,整个胚珠直立地着生在株柄上,即珠孔、珠心、合点和珠柄处于同一直线上,如荞麦、胡桃胚珠。2. 倒生胚珠(anatropous ovule):胚珠一侧生长快,另一侧生长慢

植物器官培养方法介绍

培养基(培地)和培养方法,一般与组织培养没有大的差别,但对含有叶绿素的器官,要在光下进行单独营养,因此能在简单的只含无机盐的培养基中即可发育。但是在暗培养条件下,如果不供给呼吸基质和维生素类以及其它有机物则不能生长。植物的培养组织,比动物器官的形成能力要大得多。许多组织培养,培养时间长了,便过渡到器

新化石破解达尔文“讨厌之谜”

19世纪早期古植物学研究发现,被子植物化石在白垩纪(1.45亿~6600万年前)地层中突然大量出现,这似乎与生物演化是渐进的进化论观点相悖,达尔文对此感到困惑不解,称其为“讨厌之谜”。 4年前,中国科学院南京地质古生物研究所(以下简称南京古生物所)带领中美国际合作团队在内蒙古发现了新化石,进而证

胚珠培养的技术特点

中文名称胚珠培养英文名称ovule culture定  义将胚珠从母体上分离出来放在无菌的人工环境条件下,使其进一步生长发育形成幼苗的技术。应用学科细胞生物学(一级学科),细胞培养与细胞工程(二级学科)

RNA为模板-首次实现植物同源重组修复

  中国农业科学院作物科学研究所作物转基因技术与应用创新团队与美国加州大学圣地亚哥分校合作,使用核糖核苷酸(RNA)作为同源重组修复(HDR)的模板,成功获得后代无转基因成分的抗ALS抑制剂类除草剂水稻植株。这是在植物中首次成功利用RNA作为脱氧核糖核酸(DNA)同源重组修复模板。相关研究论文北京时

Science文章:植物的体细胞到生殖细胞

  与人类和动物不同,植物的生殖细胞是在花的生殖器官(雌蕊和雄蕊)中从体细胞重新演变的。植物的早期胚胎发育,并没有为将来的配子(生殖细胞)产生预留专门的细胞系。  被选中的体细胞的细胞分裂模式从有丝分裂转变为减数分裂,以减少染色体的数量,方便基因重组。在恰当的部位,恰当的时间,将体细胞变为生殖细胞,

研究揭示植物调控同源重组修复的新机制

近日,华中农业大学生命科学技术学院教授严顺平团队在国际学术期刊PNAS在线发表成果。该研究不仅揭示了植物调控同源重组修复的新机制,也为利用同源重组修复机制提高植物基因打靶效率提供了新思路。同时,该研究还首次揭示了植物调控SOG1蛋白稳定性的机制,具有重要的科学意义。所有生物都需要把正确的遗传信息(D

概述从植物器官分离单细胞的内容

  分离单细胞的最佳材料是叶组织,因为叶片中的细胞近似于一个同质细胞群体,较适合于特定和调控的大规模细胞培养。用机械法或酶解法可以从这种完整植物体器官(如叶细胞)分离出单细胞。  1、机械法  指通过机械磨碎、切割植物体从而获得游离的单细胞。用机械法可大规模地对薄壁组织细胞进行分离。  2、酶解法 

从植物器官分离单细胞的方法介绍

分离单细胞的最佳材料是叶组织,因为叶片中的细胞近似于一个同质细胞群体,较适合于特定和调控的大规模细胞培养。用机械法或酶解法可以从这种完整植物体器官(如叶细胞)分离出单细胞。1 机械法指通过机械磨碎、切割植物体从而获得游离的单细胞。用机械法可大规模地对薄壁组织细胞进行分离。2 酶解法指用专一的水解酶(

野外识别各种花序、果实和种子

实验材料:野外生长的各种花序、果实和种子      仪器、耗材:放大镜刀片                                                                  枝剪                                            

野外识别各种花序、果实和种子实验

实验方法原理 实验材料 野外生长的各种花序、果实和种子仪器、耗材 放大镜刀片枝剪采集袋镊子铅笔笔记本等实验步骤 1. 观察各种花序类型花是植条的变态,花序是更大的植条变态。花序在发育当初也是来自芽(花芽或混合芽),只不过是许多花共同生于一棵芽中。花序发育成熟后,形态各异,有的反复分枝,有的则高度密集

野外识别各种花序、果实和种子

实验材料野外生长的各种花序、果实和种子仪器、耗材放大镜刀片枝剪采集袋镊子铅笔笔记本等实验步骤1. 观察各种花序类型花是植条的变态,花序是更大的植条变态。花序在发育当初也是来自芽(花芽或混合芽),只不过是许多花共同生于一棵芽中。花序发育成熟后,形态各异,有的反复分枝,有的则高度密集。2 观察各种果实类

关于组培苗的培养类型

  (一)愈伤组织培养  愈伤组织培养就是将外植体接种在人工培养基上,由于植物生长调节剂的存在,使细胞脱分化形成 愈伤组织,然后通过再分化形成再生植株。  (二)器官和组织培养  器官和组织培养是通过培养器官和组织的类别来分类的。如果培养的是花药,称为花药培养;如果 是胚珠,称为胚珠培养;如果培养的

植物组织培养技术的分类

  1、胚胎培养  指以从胚珠中分离出来的成熟或未成熟胚为外植体的离体无菌培养。  2、器官培养  指以植物的根、茎、叶、花、果等器官为外植体的离体无菌培养,如根的根尖和切段,茎的茎尖、茎节和切段,叶的叶原基、叶片、叶柄、叶鞘和子叶,花器的花瓣、雄蕊(花药、花丝)、胚珠、子房、果实等的离体无菌培养。

植物组培的相关分类介绍

  1、胚胎培养  指以从胚珠中分离出来的成熟或未成熟胚为外植体的离体无菌培养。  2、器官培养  指以植物的根、茎、叶、花、果等器官为外植体的离体无菌培养,如根的根尖和切段,茎的茎尖、茎节和切段,叶的叶原基、叶片、叶柄、叶鞘和子叶,花器的花瓣、雄蕊(花药、花丝)、胚珠、子房、果实等的离体无菌培养。

植物组织培养的分类介绍

  1、胚胎培养  指以从胚珠中分离出来的成熟或未成熟胚为外植体的离体无菌培养。  2、器官培养  指以植物的根、茎、叶、花、果等器官为外植体的离体无菌培养,如根的根尖和切段,茎的茎尖、茎节和切段,叶的叶原基、叶片、叶柄、叶鞘和子叶,花器的花瓣、雄蕊(花药、花丝)、胚珠、子房、果实等的离体无菌培养。

植物组织培养的培养分类

1、胚胎培养指以从胚珠中分离出来的成熟或未成熟胚为外植体的离体无菌培养。2、器官培养指以植物的根、茎、叶、花、果等器官为外植体的离体无菌培养,如根的根尖和切段,茎的茎尖、茎节和切段,叶的叶原基、叶片、叶柄、叶鞘和子叶,花器的花瓣、雄蕊(花药、花丝)、胚珠、子房、果实等的离体无菌培养。3、组织培养指以

山农大女“杰青”连发重要学术成果

  山东农业大学生命科学学院的张彦教授,长期从事植物有性生殖机理的研 究,2011年受聘泰山学者海外特聘专家,先后获得山东省留学人员回国创业奖,山东省青年科技奖,主持承担了国家科技部重大科学研究计划课题、国家自然科 学基金面上项目、山东省杰出青年基金等多个项目,发表SCI论文20余篇,其研究成果对于

植物所在植物侧生器官发育和多样化机制研究中获进展

  植物的侧生器官如叶片、萼片和花瓣等,按基本结构可分为双面、单面和盾状三种类型。盾状器官如食虫植物的捕虫叶和毛茛科植物具蜜腺的花瓣在自然界普遍存在,吸引了达尔文等很多科学家的关注。已有研究表明,背腹极性基因的表达重排是一些食虫植物中盾状叶或小叶形成的关键。然而,其他盾状器官形成、起源和多样化的机制

华南植物园原始被子植物花器官发育研究获得新发现

  番荔枝科隶属于木栏目,为原始被子植物,其花的形态具有很高的多样性。中科院华南植物园植物系统与进化研究领域徐凤霞研究员与英国爱丁堡皇家植物园Ronse De Craene博士对番荔枝科15个种的花发育进行研究后发现,该科花原基分生组织变异很大,具有三基数和四基数类型及之间的过渡类型,一些类群的内轮

胚胎培养技术方法介绍

胚胎培养(embryoculture)是植物组织培养的一个主要领域。植物胚胎培养是指对植物的胚(种胚)及胚器官(如子房,胚珠)进行人工离体无菌培养,使其发育成幼苗的技术。

我国学者使用RNA模板首次在植物中实现同源重组修复

  近日,中国农业科学院作物科学研究所作物转基因技术与应用创新团队与美国加州大学圣地亚哥分校合作,使用RNA作为同源重组修复(HDR)的模板,并分别利用核酶自切割和具有RNA/DNA双重切割能力的CRISPR/Cpf1基因编辑系统,成功获得后代无转基因成分的抗ALS抑制剂类除草剂水稻植株。该研究是在

RNA修复模板在植物中实现CRISPR/Cpf1同源重组修复

  借助 CRISPR/Cas 系统介导的 HDR,实现优异等位基因替换和基因定点插入,进而创制农作物新种质,是农作物基因组编辑研究的热点和重要课题之一。但目前这一技术的广泛应用仍十分具有挑战性,主要原因在于:1)CRISPR/Cas系统引起的基因组靶位点DNA序列双链断裂(Double-stran

组织培养的技术分类

按外植体分,植物组织培养可分以下几类:1、胚胎培养植物的胚胎培养,包括胚培养、胚乳培养、胚珠和子房培养,以及离体受精的胚胎培养技术等。2、器官和组织培养器官培养是指植物某一器官的全部或部分或器官原基的培养,包括茎段、茎尖、块茎、球茎、叶片、花序、花瓣、子房、花药、花托、果实、种子等。组织培养有广义和

植物所发现植物中与器官运动促成自交相关的新细胞类型

植物一般不能自主移动,但许多植物依赖流体静力和渗透压产生大幅度的器官运动以适应外界环境。近二十年来,这一现象在生物力学和生化研究领域备受关注并取得进展,但在细胞和分子机制方面仍是未被探索的领域。 中国科学院植物研究所王印政研究组发现了植物中一种新的细胞类型,即充满水敏性粗面内质网的收缩细胞(cont