半导体探测器简介

半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,晶体管电子学的发展促进了半导体技术的发展。半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单......阅读全文

半导体探测器简介

  半导体探测器是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似,故又称固体电离室。半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号。常用半导体探测器有 P-N结型半导体探测器、 锂漂

半导体探测器简介

半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,

半导体探测器的发展历史

  半导体探测器的前身可以认为是晶体计数器 。早在1926年就有人发现某些固体电介质在核辐射下产生电导现象。后来,相继出现了氯化银、金刚石等晶体计数器。但是,由于无法克服晶体的极化效应问题,迄今为止只有金刚石探测器可以达到实用水平。半导体探测器发现较晚,1949年开始有人用α 粒子照射锗半导体点接触

半导体探测器的应用领域

随着科学技术不断发展需要,科学家们在锗锂Ge(Li)、硅锂Si(Li)、高纯锗HPGe、金属面垒型等探测器的基础上研制出许多新型的半导体探测器,如硅微条、Pixel、CCD、硅漂移室等,并广泛应用在高能物理、天体物理、工业、安全检测、核医学、X光成像、军事等各个领域。世界各大高能物理实验室几乎都采用

哪些半导体光电探测器有增益

雪崩光电二极管。它应用光生载流子在二极管耗尽层内的碰撞电离效应而获得光电 流的雪崩倍增。这种器件具有小型、灵敏、快速等优点,适用于以微弱光信号的探测和接收,在光纤通信、激光测距和其他光 电转换数据处理等系统中应用较广。

半导体X射线探测器相关介绍

  半导体探测器是以半导体材料为探测介质的辐射探测器。锗和硅是我们最通用的半导体探测材料,其基本原理与气体电离室相类似。晶体计数器可以认为是半导体探测器的前身,20世纪初期人们发现在核辐射下可以通过某些固体电介质产生电导现象,在这之后金刚石、氯化银等晶体计数器又相继被人们发明。可是我们至今无法解决晶

半导体探测器的基础知识

半导体原子规则排列成点阵状态。其最小单元叫作晶包,对锗来讲是小四面体,即金刚石结构。电子在晶体中为晶包所公有,形成能带结构,如图4-1-1所示。下面的能带称为价带,又称满带,平时被电子填满。中间是禁带(又称能隙)。上面是导带,平时没有电子(又称空带)。在价带以下还有更低能量的价带;在导带以上还有更高

气体探测器简介

  气体探测器是一种检测气体浓度的仪器。该仪器适用于存在可燃或有毒气体的危险场所,能长期连续检测空气中被测气体爆炸下限以内的含量。可广泛应用于燃气,石油化工,冶金,钢铁,炼焦,电力等存在可燃或有毒气体的各个行业,是保证财产和人身安全的理想监测仪器。

光电探测器简介

  光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像

光探测器简介

  又名“光检测器”,是光接收机的首要部分,光探测器是光纤传感器构成的一个重要部分,它的性能指标将直接影响传感器的性能。能检测出入射到其面上的光功率,并把这个光功率的变化转化为相应的电流。由于光信号在光纤中有损耗和失真所以对光探测器的性能要求很高。其中最重要的要求是在所用的光源的波长范围内有较高的灵

半导体探测器的实际操作运用

  丁肈中领导的AMS实验,目标是在宇宙线中寻找反物质和暗物质。它的探测器核心部分的径迹室采用了多层硅微条探测器。由美国、法国、意大利、日本、瑞典等参加的GLAST实验组的大面积γ射线太空望远镜的核心部分也使用了多层硅微条探测器,总面积大于80平方米,主要用来作为γ→ e-+e+ 的对转换过程的径迹

PN结半导体探测器的类型

    扩散结(Diffused Junction)型探测器  采用扩散工艺——高温扩散或离子注入 ;材料一般选用P型高阻硅,电阻率为1000;在电极引出时一定要保证为欧姆接触,以防止形成另外的结。  金硅面垒(Surface Barrier)探测器  一般用N型高阻硅,表面蒸金50~100μg/c

半导体探测器的趋势和应用领域

  趋势  上述各种γ射线探测器均须在低温下工作。人们日益注意探索可在常温下探测γ射线的半导体材料。一些原子序数较大的化合物半导体,如碲化镉、砷化镓、碘化汞、硒化镉等,均已用于制备X、γ射线探测器,并已取得不同程度的进展。  应用领域  随着科学技术不断发展需要,科学家们在锗锂Ge(Li)、硅锂Si

半导体探测器的基本原理和特点

  基本原理  半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号 [2] 。  我们把气体探测器中的电子-离子对、闪烁探测器中被 PMT第一打拿极收集的电子 及半导体探测器中的电子-空穴对统称为探测器的信息载流子。产生每个信息载流

PN结半导体探测器的工作原理

  多数载流子扩散,空间电荷形成内电场并形成结区。结区内存在着势垒,结区又称为势垒区。势垒区内为耗尽层,无载流子存在,实现高电阻率,远高于本征电阻率 [4] 。  在P-N结上加反向电压,由于结区电阻率很高,电位差几乎都降在结区。  反向电压形成的电场与内电场方向一致。  在外加反向电压时的反向电流

高纯锗(HPGe)半导体探测器的相关介绍

  简介  随着锗半导体材料提纯技术的进展,已可直接用超纯锗材料制备辐射探测器。它具有工艺简单、制造周期短和可在室温下保存等优点。用超纯锗材料还便于制成X、γ射线探测器,既可做成很大灵敏体积,又有很薄的死层,可同时用来探测X和γ射线。高纯锗探测器发展很快,有逐渐取代锗。  工作原理  采用高纯度的

光探测器的类型简介

  光电倍增管  由光电阴极和装在真空管内的倍增器组成,有很高的增益和很低的噪声,但尺寸较大且需要较高的偏置电压,不适合光纤通信系统。  热电探测器  包含了从热能到光能的转换,这种探测器的响应在相当宽的光谱范围内都是平坦的,但响应速度很慢也不适合光纤通信系统。  半导体光探测器  在半导体光探测器

柴油气体探测器简介

   柴油气体探测器,通过进口传感器,感应柴油气体浓度,将检测浓度值转送到气体报警控制器,进行浓度的显示、及超出设置报警点后的声光报警提醒,以提醒用户采取安全措施,并驱动排风、切断、喷淋系统,防止发生爆炸、火灾、中毒事故,从而保障安全生产。产品广泛应用于燃气、石油、化工、冶金等存在易燃、易爆、毒性气

硅化铂探测器简介

  硅化铂探测器是指利用铂硅肖特基势垒和内光电效应将入射的红外辐射转变成电信号的器件。又称硅化铂肖特基势垒探测器。  简介  硅化铂探测器是指利用铂硅肖特基势垒和内光电效应将入射的红外辐射转变成电信号的器件。又称硅化铂肖特基势垒探测器。  用途  主要用于中、短波红外辐射的探测。  构造  它的构造

气体探测器的原理简介

  入射粒子使高压电极和收集电极间的气体电离,生成的电子离子对电场的作用下向两极漂移,在收集电极上产生输出脉冲,反馈到测量系统称为具体的电信号并显示在屏幕上。(错。这是气体核辐射探测器的原理,不是可燃气体探测器的原理。可燃气体探测器的大致原理是用电化学方式检测被测气体。而气体核辐射探测器是用工作气体

辐射探测器的历史简介

  能给出电信号的辐射探测器已不下百余种。最常用的主要有气体电离探测器、半导体探测器和闪烁探测器三大类。早在1908年,气体电离探测器就已问世。但直到1931年脉冲计数器出现后才解决了快速计数问题。1947年,闪烁计数器的出现,由于其密度远大于气体而大大提高了对粒子的探测效率。最显著的是碘化钠(铊)

气体X射线探测器简介

  气体探测器均以气体作为探测介质,内部多充有以多种惰性气体为主混合气体,并在探测器两极加上电压小室。其小室的形状大小结构因气体探测器的不同会有加大差别。在探测器使用时我们多将内部气体大气压加至2到3个大气压,这样可以有效提高气体探测器的探测效率。气体探测器的工作原理是通过收集电离电荷获取核辐射信息

CdZnTe半导体探测器X射线能谱响应特性分析

CdZnTe是一种性能优异的高能射线探测材料,在空间科学、核安全以及核医学等众多领域有广泛的应用前景.本文选取了3枚不同等级的CdZnTe探测器,在详细阐述了CdZnTe探测器工作原理的基础上,对比分析了他们的能谱响应曲线和载流子输运特性的关系.重点分析了CdZnTe探测器能量分辨率、电荷收集效率和

半导体的光电导简介

  半导体的光电导(photo conductivity of semiconductor)是指光照射半导体使电导增大的现象。本征半导体的电导能力(电导率)很小,经光照射后半导体内部产生光生载流子(电子或空穴),使其导电能力加大。光照射前后半导体电导的改变与光的波长、强度以及半导体中杂质缺陷态的能级

X射线探测器的发展简介

  增大z轴的覆盖宽度  从发展的角度看,希望X射线管旋转一周就能获得更多的层面,即可完成一个脏器的扫描,实现所谓的容积扫描(Volume Scan)。为此势必要增大探测z轴的覆盖宽度,要想延长z轴的覆盖宽度,不仅取决于增加探测器的排数,建立更多的数据采集通道同样非常重要,这样才能既保证Z轴的覆盖宽

光电探测器的工作原理简介

  光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。  光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一

燃气探测器的工作原理简介

  可燃气体探测器采用高品质气体传感器,微处理器结合精密温度传感器能够智能补偿气敏元件的漂移,环境适应范围宽,工作稳定,无需调试,采用吸顶安装方式,安装简单,接线方便,广泛用于家庭、宾馆、公寓等存在可燃气体的场所进行安全监控。可检测 天然气、液化石油气,人工煤气。  探测器工作电压为直流供电。报警后

先进的半导体工艺:FinFET简介

  FinFET简介  FinFET称为鳍式场效晶体管(FinField-EffectTransistor;FinFET)是一种新的互补式金氧半导体(CMOS)晶体管。闸长已可小于25奈米。该项技术的发明人是加州大学伯克利分校的胡正明教授。Fin是鱼鳍的意思,FinFET命名根据晶体管的形状

硅微条探测器的结构简介

  从探测器横截面上看,主要分这样几个部分:  探测器表面:有薄铝条, SiO2隔离条,铝条下边是重掺p+条。  中间部分:是厚度大约为300μm 的高阻n 型硅基,作为探测器的灵敏区。  底部:是n 型硅掺入砷(As) 形成重掺杂n+ 层和铝薄膜组成的探测器的背衬电极。  微条(strips)是探

半导体所在柔性一维光电探测器研究方面取得系列进展

  随着科学技术日新月异的发展,人们对便携化、娱乐化、健康化的可穿戴式电子设备不断追求,促使其相应的柔性传感器件向着高效、低成本、大面积制造等方向发展。近些年,为了实现光电探测器的便携化和可移植化,柔性光电探测器的设计与制备受到了研究人员的广泛关注。柔性光探技术的快速发展对敏感材料的敏感性与柔韧性要