科学家发现嗅鞘细胞新起源

据美国物理学家组织网11月15日报道,嗅鞘细胞(OECs)是包在嗅觉神经纤维外面起保护作用的被膜,过去25年来,人们一直认为嗅鞘细胞是由鼻内膜形成的,但英国科学家一项新研究显示,嗅鞘细胞有着不同的起源。 如果将嗅鞘细胞移植到受损的脊髓中,能促进神经修复,支持中枢神经系统再生,这一新发现为治疗脊髓损伤提供了更加可靠的资源。该研究由英国维康基金和伊萨克·牛顿基金资助,研究结果发表在本周的美国《国家科学院院刊》上。 理论上讲,可以利用病人鼻子中取出的内膜组织,在培养皿中生长出嗅鞘细胞来,然后将其移植到损伤的脊髓中就能促进神经修复,而无需担心任何排异反应。但这种方法得到的细胞数量太少,不能为治疗提供足够的来源。 论文主要作者、英国剑桥大学发展与神经科学生物系的克雷尔·贝克博士说:“鼻内膜中的嗅鞘细胞太少了,其中还包裹着周边神经纤维,而这些纤维和嗅鞘细胞非常相似,对促进脊髓修复没什么效果。很难从鼻内膜中提纯出足够的......阅读全文

科学家发现嗅鞘细胞新起源

  据美国物理学家组织网11月15日报道,嗅鞘细胞(OECs)是包在嗅觉神经纤维外面起保护作用的被膜,过去25年来,人们一直认为嗅鞘细胞是由鼻内膜形成的,但英国科学家一项新研究显示,嗅鞘细胞有着不同的起源。   如果将嗅鞘细胞移植到受损的脊髓中,能促进神经修复,支持中枢神经系统再生,这一新发现为

嗅球成鞘细胞

实验材料L-多聚赖氨酸                                                                  I型胶原蛋白酶                                                                  

嗅球成鞘细胞

实验材料 L-多聚赖氨酸I型胶原蛋白酶HBSSDMEM FBSDMEM BS单克隆抗体第二抗体Sprague-Dawley大鼠试剂、试剂盒 Leibowitz L-15 培养液70%乙醇仪器、耗材 培养瓶培养皿盖玻片Petri培养皿15ml带盖聚丙烯锥形管7号弯镊和直镊带盖圆底聚苯乙稀管弯解剖剪手术

嗅球成鞘细胞

实验材料L-多聚赖氨酸I型胶原蛋白酶HBSSDMEM FBSDMEM BS单克隆抗体第二抗体Sprague-Dawley大鼠试剂、试剂盒Leibowitz L-15 培养液70%乙醇仪器、耗材培养瓶培养皿盖玻片Petri培养皿15ml带盖聚丙烯锥形管7号弯镊和直镊带盖圆底聚苯乙稀管弯解剖剪手术刀切除

嗅鞘细胞的简介

  嗅鞘细胞(olfactoryensheathingcells,OECs)是在功能上介于施旺细胞和少突胶质细胞之间的一种特殊的胶质细胞,具有神经营养、抑制胶质增生、瘢痕形成、成鞘作用等。为轴突生长提供了适宜的微环境及较强的迁移的特性,使其成为促进中枢神经再生的理想候选细胞之一。  嗅鞘细胞是目前所

嗅沟神经鞘瘤病例分析

患者女,28岁。因“间断感冒1年,嗅觉下降半年,嗅觉丧失2月”就诊。查体神清语利,对答切题,查体配合,嗅觉完全丧失。颅底CT平扫:前颅窝底-右筛窦-右侧鼻腔内见颅内外沟通的不规则软组织密度影,其内密度均匀,平均CT值约24HU,邻近结构受压,右眼眶内壁及内直肌移位;前、中颅窝底局部骨质呈压迫性骨质吸

嗅鞘细胞的细胞表达介绍

  OECs表达胶质纤维酸性蛋白(GFAP),在血管壁形成终足,以及参与形成胶质界膜,此界膜大致勾勒出了嗅神经轴突与嗅球颗粒层嗅小球的交界线,OECs在免疫细胞化学超微结构特征以及与轴突的功能联系方面与星形胶质细胞存在明显不同。OECs对神经生长因子受体(P75NGR)Laminin细胞粘附分子L1

嗅鞘细胞的分化来源

  OECs和嗅上皮均来源于嗅基板,而嗅球与其它中枢神经系统结构均起源于神经管,因此在胚胎发育过程中嗅上皮与嗅球发育是两种不同的方向,原始嗅觉神经元伴随大量基板细胞从嗅上皮传出轴突向端脑泡方向迁移,其中嗅鞘细胞引导嗅神经轴突到达端脑泡,这些细胞形成早期的嗅球,接着嗅球发生外翻,迁移细胞覆在其表面形成

绿色荧光蛋白简介

绿色萤光蛋白(Green fluorescent protein;简称GFP),由下村脩等人于1962年在维多利亚多管发光水母中发现,其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光,整个发光的过程中还需要冷光蛋白质水母素的帮助,冷光蛋白质与钙离子(Ca2+)可产生交互作用。2008

绿色荧光蛋白(GFP)标记亚细胞定位

一、原理利用绿色荧光蛋白(GFP)来示踪胞内蛋白的技术。利用GFP融合蛋白技术来进行活细胞定位研究是目前较为通行的一种方法,在光镜水平进行研究,不需要制样,没有非特异性标记的影响。并且GFP的分子量为27kD,经激光扫描共聚集显微镜激光照射后,可产生一种绿色荧光,从而对蛋白质进行精确定位。激光扫描共

绿色荧光蛋白的应用

由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。

什么是绿色荧光蛋白

绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分子或

什么是绿色荧光蛋白?

  绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分

绿色荧光蛋白GFP性质

  GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~490nm蓝光波长下更稳定。  GFP需要在氧化状态下产生荧光,强还原剂能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而

嗅鞘细胞的细胞纯化的方法简介

  纯化细胞的方法较多,一般有差速贴壁,化学药物法,梯度离心法,免疫亲和吸附法。以后者纯化效果最好,其纯度可达99%以上,是目前普遍采用的方法之一。但是此法步骤较为繁琐,费用高,同时细胞经过反复清洗,活性下降,于是给下一步培养带来了一定的困难。  主要影响纯化的是成纤维细胞,在培养24-48h加入阿

嗅鞘细胞的原代培养实验

实验方法原理嗅鞘细胞是在功能上介于施万细胞和少突胶质细胞之间的一种特殊胶质细胞,是决定嗅神经元轴突终生再生的关键因素。它具有神经营养、抑制胶质增生、瘢痕形成、成鞘等作用,为轴突生长提供了适宜的微环境及较强的迁移特性,已成为促进中枢神经再生的理想候选细胞之一。基于其与成纤维细胞贴壁能力的不同,目前我们

嗅鞘细胞的研究历史的介绍

  从第一次嗅鞘细胞的生物学文章发表已经有二十余年历史了。1994年RamonCueto和Nieto-Sampedrol发表了第一篇关于嗅鞘细胞有助于感觉轴突长入脊神经切断术的文章,在此之前Doucette实验室发表了嗅鞘细胞移植人脑后存活的文章,Raisman小组发现皮质脊髓束损伤后行嗅鞘细胞移植

嗅鞘细胞的原代培养实验

实验方法原理 嗅鞘细胞是在功能上介于施万细胞和少突胶质细胞之间的一种特殊胶质细胞,是决定嗅神经元轴突终生再生的关键因素。它具有神经营养、抑制胶质增生、瘢痕形成、成鞘等作用,为轴突生长提供了适宜的微环境及较强的迁移特性,已成为促进中枢神经再生的理想候选细胞之一。基于其与成纤维细胞贴壁能力的不同,目前我

嗅鞘细胞的原代培养实验

基本方案实验方法原理嗅鞘细胞是在功能上介于施万细胞和少突胶质细胞之间的一种特殊胶质细胞,是决定嗅神经元轴突终生再生的关键因素。它具有神经营养、抑制胶质增生、瘢痕形成、成鞘等作用,为轴突生长提供了适宜的微环境及较强的迁移特性,已成为促进中枢神经再生的理想候选细胞之一。基于其与成纤维细胞贴壁能力的不同,

嗅鞘细胞的主要特征介绍

  嗅鞘细胞是一种嗅神经的支持细胞,它包被神经轴突迁徙入脑,在颅底它和嗅球的僧帽细胞相结合。分布于嗅神经的全长,从嗅上皮基底膜一直到嗅球,主要位于嗅神经的纤维层,至于是否深入到颗粒层仍存在争议。嗅鞘细胞具有雪旺氏细胞和星形胶质细胞的特性,但总的表现更趋于前者,它有两个独特的特征。第一,它不仅存在于外

嗅鞘细胞的原代培养实验

基本方案实验方法原理嗅鞘细胞是在功能上介于施万细胞和少突胶质细胞之间的一种特殊胶质细胞,是决定嗅神经元轴突终生再生的关键因素。它具有神经营养、抑制胶质增生、瘢痕形成、成鞘等作用,为轴突生长提供了适宜的微环境及较强的迁移特性,已成为促进中枢神经再生的理想候选细胞之一。基于其与成纤维细胞贴壁能力的不同,

绿色荧光蛋白的发现过程

1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广

绿色荧光蛋白的应用特点

由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。GFP和它的衍生物的可用性已经彻底重新定义荧光显微镜,以及它被用来在细胞生物学和其他生物学科的方

绿色荧光蛋白的发现过程

1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广

绿色荧光蛋白的功能介绍

绿色荧光蛋白(Green fluorescent protein,简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。虽然许多其他海洋生物也有类似的绿色荧光蛋白,但传统上,绿色荧光蛋白(GFP)指首先从维多利亚多管发光水母中分离的蛋白质。这种蛋白质最早是由下

绿色荧光蛋白的基本结构

野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的

绿色荧光蛋白的结构特点

野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的

绿色荧光蛋白的发现过程

1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广

绿色荧光蛋白(GFP)的应用

  骨架和细胞分裂  Kevin Sullivan's 实验室  酵母菌内SPB 和微管动力学  酵母菌中肌动蛋白的动力  果蝇中MEI-S332蛋白  果蝇有丝分裂和mRNA运输  网丙菌属细胞骨架  RNA剪切因子的核内运输  网丙菌属的趋化作用  网丙菌属中细胞骨架动力和细胞运动  核

绿色荧光蛋白的结构介绍

野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的