中科院科学家在核糖体再循环机制方面取得新进展
2015年 10月 3日,中国科学院生物物理所秦燕课题组在核酸类重要学术杂志《核酸研究》(Nucleic Acids Research)上发表了题为“New insights into the enzymatic role of EF-G inribosome recycling”的论文,报道了他们在蛋白翻译核糖体再循环过程中延伸因子EF-G所起作用方面的工作进展。 蛋白质翻译是生命活动中的重要环节。众所周知,蛋白质翻译是一个包括起始、延伸、终止和再循环四步的循环过程。每一步都与相应翻译GTP酶及其他翻译因子的帮助。而翻译延伸因子EF-G是唯一一个同时参与延伸与核糖体再循环两个步骤的GTP酶。延伸过程中,EF-G促进(tRNA)2?mRNA由A、P位点移位到P、E位点;在核糖体再循环过程中,EF-G与再循环因子RRF一起将核糖体翻译终止复合物拆分为大小亚基,并释放mRNA与脱酰基的tRNA,以便于下一个翻译循环再利用。因此......阅读全文
研究原位捕捉真核核糖体动态翻译周期
核糖体翻译将mRNA中的信息解码并转化为直接执行细胞功能的蛋白质。这些蛋白质构成了新陈代谢的基础,并在维持细胞过程和有机体生命活动的正常运作中发挥着关键作用。翻译过程涉及多个环节和各种分子的精确协同作用,使得体外纯化的样品单颗粒分析技术难以捕捉到完整的翻译过程。尽管领域内已有较多基于电子断层成像的核
研究揭示翻译起始前核糖体的双向扫描过程
核糖体准确地识别起始密码子并起始翻译是决定生物体内蛋白质稳态的重要机制。前人研究发现真核生物翻译前起始复合物(Preinitiation complex,PIC,包含核糖体小亚基和多种起始因子)通常从最靠近mRNA的5′帽的AUG起始翻译。如果在报告基因起始密码子AUG(annotated AU
翻译因子EF4给核糖体挂“倒挡”
中国科学院生物物理所秦燕课题组和清华大学高宁课题组合作,揭示了核糖体在蛋白翻译过程中“倒退”的分子机理,即翻译因子EF4通过释放肽酰tRNA的3’末端催化核糖体的倒退运动。相关成果1月26日凌晨在线发表于《自然—结构与分子生物学》。 核糖体是生命出现前的最后一个必需要素,被生物学家称为地球上所
科学家原位捕捉真核核糖体动态翻译周期
中国科学院生物物理研究所章新政研究组近日揭示了真核细胞核糖体翻译过程中动态变化的新机制,为深入理解蛋白质合成的精细调控提供了新的视角。相关研究成果1月9日发表于《自然-结构与分子生物学》。核糖体翻译对生命至关重要,它将mRNA中的信息解码并转化为直接执行细胞功能的蛋白质。然而,翻译过程复杂且涉及多种
生物物理所发现核糖体翻译因子新的调控机制
9月10日,核酸领域的重要杂志《核酸研究》(Nucleic Acids Research) 在线发表了中科院生物物理研究所秦燕课题组和龚为民课题组合作的一项最新研究成果,该文章标题为Common chaperone activity in the G-domain of trGTPase pro
核糖体碰撞广泛存在并可促进新生肽链的共翻译折叠
翻译是核糖体读取mRNA上承载的遗传信息并转译为氨基酸序列的有序过程。mRNA序列除了包含氨基酸序列的信息,还可能携带调控翻译延伸速率的信息。但相比于从密码子到氨基酸的明确对应关系,学界关于翻译延伸速率的调控信息知之甚少。新兴的ribo-seq技术通过RNA酶降解无核糖体“保护”的mRNA片段,
研究揭示核糖体在蛋白翻译过程中倒退的分子机理
1月25日,Nature 子刊Nature Structural & Molecular Biology 在线发表了中国科学院生物物理研究所RNA生物学重点实验室秦燕课题组的最新研究成果。该文章题为EF4 disengages the peptidyl-tRNA CCA end and faci
关于颗粒状细胞器—核糖体的mRNA的翻译功能介绍
核糖体的主要功能是将遗传密码转换成氨基酸序列并从氨基酸单体构建蛋白质聚合物。mRNA包含一系列密码子,被核糖体解码以产生蛋白质。核糖体以mRNA作为模板,核糖体通过移动穿过mRNA的每个密码子(3个核苷酸),将其与氨酰基-tRNA提供的适当氨基酸配对。氨基酰基-tRNA的一端含有与密码子互补的反
关于颗粒状细胞器—核糖体的翻译共折叠功能介绍
核糖体积极参与蛋白质折叠。在某些情况下,核糖体对于获得功能性蛋白质至关重要。例如,深度打结蛋白质的折叠依赖于核糖体将链条推过附着的环。 1、添加不依赖翻译的氨基酸 核糖体质量控制蛋白Rqc2的存在与mRNA非依赖性的蛋白质多肽链的延伸相关。这种延伸是核糖体通过Rqc2带来的tRNA添加CAT
降低核糖体蛋白质翻译功能-对延缓衰老具有重要作用
健康长寿是内在遗传与外在环境因素等共同作用的结果。近日,科技日报记者从中国科学院昆明动物研究所获悉,该所近期牵头的一项研究揭示了降低核糖体的蛋白质翻译功能对延缓衰老具有重要作用,这为前沿衰老理论提供了新证据。该研究成果近日发表在国际知名期刊《科学进展》上。 自2000年以来我国人口老龄化程度持
Science:神经元突起中,单核糖体偏好性地翻译突触mRNA
RNA测序和原位杂交揭示了神经元树突和轴突中存在意想不到的大量RNA种类,而且许多研究已经记录了蛋白在这些区室中的局部翻译。在信使RNA(mRNA)的翻译过程中,多个核糖体可以同时占据单个mRNA(一种称为多核糖体的复合物),从而导致编码蛋白的多个拷贝产生。多核糖体通常在电子显微镜图片中被识别为
中科院揭示核糖体在蛋白翻译过程中移位的分子机理
国际分子生物学重要杂志《Nature Structural & Molecular Biology》在线发表了中国科学院生物物理所秦燕等人的最新研究成果。这篇题为“EF-G catalyzes tRNA translocation by disrupting interactions betwe
生物物理所等研究揭示核糖体对翻译因子调控的新机制
3月11日,中国科学院生物物理研究所秦燕研究员指导的一项科研成果登上了《自然—结构和分子生物学》(Nature Structural & Molecular Biology) 最新一期电子版。该文章标题为A conserved proline switch on the ribo
关于体外翻译翻译系统的选择介绍
虽然不是必须,但一般说,选用真核系统来翻译真核序列,选用原核系统来翻译原核序列。 如果一个系统存在功能上或抗原的交叉反应,就得选择另一个系统。使用微粒体膜进行翻译后修饰或加工一般只与兔网织红细胞系统兼容。仅在某些特定条件下麦胚芽翻译系统才与微粒体膜兼容。
蛋白质翻译不出来吗?可能是氨基酸序列正在破坏核糖体
蛋白质是多肽链组成的三位结构,多肽链的氨基酸序列由DNA密码书写,编写多肽链的过程发生在核糖体,它们被称为蛋白质合成机器。根据遗传密码,来自DNA拷贝序列的信使RNA逐个聚合氨基酸分子,直到整条链的终点才从核糖体上脱离。 核糖体合成蛋白质的过程被称为“翻译”,所以生物体的所有蛋白质都是通过翻译
翻译后修饰
中文名翻译后修饰外文名Post-translational modification定义翻译后修饰是指蛋白质在翻译后的化学修饰。对于大部分的蛋白质来说,这是蛋白质生物合成的较后步骤。
翻译的起始
(一)原核细胞原核细胞的翻译起始过程大概可以分为以下几个过程:(1)翻译起始因子IF3结合到小亚基的E位点,同时也横跨至P位点;(这一过程在起始之初就已经完成)起始因子IF1结合至A位点;(2)起始因子IF2·GTP被IF3和IF1招募至P位点;(3)起始fMet·tRNA一方面被mRNA起始密码子
发现线粒体翻译与细胞质翻译协调机制
中科院生物物理所与中科院动物所、军事医学科学院以及天津科技大学等机构合作,揭示了线粒体翻译与细胞质翻译之间的“协调”机制。研究还揭示了一种全新的男性不育发病途径,对男性不育临床干预具有重要借鉴意义。相关成果4月11日在线发表于《自然—结构域分子生物学》期刊。生物物理所研究员秦燕为通讯作者,该所
A翻译成中文
一、事由 今天2012年5月9日《北京青年报》C1版《天天副刊》,刊登了晋平先生的文章,其中有如下一段文字: 一次我的一个外国朋友问我“知道ABCD的A翻译成中文是什么吗?”在我满头雾水之后告诉我“A翻译过来就是假的意思。”因为他在这里买的假货都叫A货。在丰富了知识的同时,我被他的幽默感吓着
基因翻译的延伸
此过程在真核细胞和原核细胞中高度类似,下面只以原核细胞为例进行讨论。涉及到的因子主要有EF·Tu和EF·G,在真核细胞中对应的名称分别是是eEF1和eEF2。A. tRNA的转运和入位(1)非起始AA·tRNA结合EF·Tu·GTP形成一个三元复合物;(2)该三元复合物结合至核糖体P位点,tRNA反
翻译的生化基础
翻译的化学本质是单个氨基酸脱水缩合形成肽链,这一过程需要多种酶的参与。而在体内,多种酶参与的多种化学反应组成了翻译的生物化学途径。就化学层面来看,翻译主要涉及到三个化学步骤:氨基酸的腺苷化(Amino Acid Adenylation)、tRNA装载(tRNA charging)、肽键的形成。腺苷化
什么是翻译调控?
在mRNA翻译成蛋白质的水平上进行控制,包括控制蛋白质合成的速度、mRNA稳定性的控制、翻译起始的控制等。
基因翻译的终止
本过程细胞主要需完成以下目标:(1)使翻译停止,不再有新的氨基酸掺入;(2)释放合成的多肽链;(3)释放结合在mRNA上的各组分;(4)确保核糖体大小亚基以及重要因子的重复利用。原核细胞和真核细胞在此过程的处理上有明显不同,下面将分开介绍。 (一)原核细胞A.肽链的释放(1)释放因子RF1/2 (t
翻译的过程简述
翻译过程需要的原料:mRNA、tRNA、21种氨基酸、能量、酶、核糖体。翻译的过程大致可分作三个阶段:起始、延长、终止。翻译主要在细胞质内的核糖体中进行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下与特定的转运RNA结合并被带到核糖体上。生成的多肽链(即氨基酸链)需要通过正确折叠形成蛋白质,许多蛋
关于基因表达的翻译调控和翻译后调控的介绍
1、基因表达的翻译调控 翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。 2、基因表达的翻译后调控 翻译后修饰(PTM)是对蛋
机器能否扛起翻译大旗
原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454879.shtm 将英语逐出中学必修课的话题余音未了,谷歌翻译就“翻车”了。 近日,谷歌翻译对一份英文药物说明译出:“您可以根据疼痛程度使用尽可能多的反坦克导弹”的句子。有研究者发布了谷歌翻译
简述翻译的终止目标
本过程细胞主要需完成以下目标: (1)使翻译停止,不再有新的氨基酸掺入; (2)释放合成的多肽链; (3)释放结合在mRNA上的各组分; (4)确保核糖体大小亚基以及重要因子的重复利用。
SD序列的翻译影响
一般来说,mRNA与核糖体的结合程度越强,翻译的起始效率就越大,而这种结合程度主要取决于SD序列与16S rRNA的碱基互补性,其中以GGAG 4个碱基序列尤为重要。其中,大肠杆菌的SD序列为AGGAGGU。对多数基因而言,这4个碱基中任何一个换成C或T,均会导致翻译效率大幅度降低。SD序列与起
关于翻译的过程介绍
翻译过程需要的原料:mRNA、tRNA、21种氨基酸、能量、酶、核糖体。 翻译的过程大致可分作三个阶段:起始、延长、终止。翻译主要在细胞质内的核糖体中进行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下与特定的转运RNA结合并被带到核糖体上。生成的多肽链(即氨基酸链)需要通过正确折叠形成蛋白质
翻译水平上的调控
蛋白质合成翻译阶段的基因调控有三个方面:① 蛋白质合成起始速率的调控;② MRNA的识别;③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。真核生物mRNA的“扫描模式