南开大学的科研团队攻克氮杂环化学合成难题
日前,困扰有机化学界多年的一个氮杂环化学合成难题,被南开大学的科研团队攻克。该校陈弓、何刚团队首次实现了对具有高“环张力”的苯并氮杂环丁烷类化合物的高效合成,填补了含氮杂环分子研究的一项重要空白。近日出版的英国《自然·化学》杂志发表了介绍该成果的论文。 杂环化合物是由碳原子和非碳原子共同组成环状骨架结构的一类化合物。其中含有氮原子的环碳骨架是许多医药、农药和功能材料分子的核心组成结构。体积更小的小环含氮骨架因其具有独特化学反应活性,一直是有机化学研究的热点课题。同时,它们对小分子药物的研发意义重大。然而,其极高的“环张力”让化学家们头疼不已,化学合成困难重重。 近几年,该研究团队在基于钯金属催化碳氢键活化的化学反应研究上取得了一系列成果。在此基础上,他们成功开发了一条基于分子内碳氢键氨基化策略,实现苯并氮杂环丁烷的简洁高效合成。 这项研究的一个关键是一种新型三价碘氧化剂PhI(DMM)的发明。该试剂可以抑制原本更加容易......阅读全文
氮杂环化学合成难题破解
日前,困扰有机化学界多年的一个氮杂环化学合成难题,被南开大学的科研团队攻克。该校陈弓、何刚团队首次实现了对具有高“环张力”的苯并氮杂环丁烷类化合物的高效合成,填补了含氮杂环分子研究的一项重要空白。近日出版的英国《自然·化学》杂志发表了介绍该成果的论文。 杂环化合物是由碳原子和非碳原子共同组成
化学合成基于氮杂环卡宾基元的纠缠立方体
纠缠立方体具有典型的柏拉图立方体的拓扑结构。2008年,数学家Hyde等人提出了五种纠缠立方体(即A-E)的图理论。 虽然纠缠立方体的图形已经被提出,但是迄今为止通过化学合成这些纠缠立方体的例子极少,甚至最简单的“A-类型”纠缠立方体的合成仍是极大挑战。随着超分子化学的快速发展,利用有机连接子
南开大学科研团队攻克氮杂环化学合成难题
日前,困扰有机化学界多年的一个氮杂环化学合成难题,被南开大学的科研团队攻克。该校陈弓、何刚团队首次实现了对具有高“环张力”的苯并氮杂环丁烷类化合物的高效合成,填补了含氮杂环分子研究的一项重要空白。近日出版的英国《自然·化学》杂志发表了介绍该成果的论文。 杂环化合物是由碳原子和非碳原子共同组成环
南开大学的科研团队攻克氮杂环化学合成难题
日前,困扰有机化学界多年的一个氮杂环化学合成难题,被南开大学的科研团队攻克。该校陈弓、何刚团队首次实现了对具有高“环张力”的苯并氮杂环丁烷类化合物的高效合成,填补了含氮杂环分子研究的一项重要空白。近日出版的英国《自然·化学》杂志发表了介绍该成果的论文。 杂环化合物是由碳原子和非碳原子共同组成环
氮杂环卡宾表面共价聚合研究获进展
近日,中国科学院国家纳米科学中心任金东课题组与中国科学院院士、物理研究所研究员高鸿钧,联合德国明斯特大学,在氮杂环卡宾表面共价聚合方面取得新进展。相关研究成果以On-surface synthesis of ballbot-type N-heterocyclic carbene polymers
上海大学含氮杂环构建研究获重要进展
上海大学理学院教授许斌团队在具有生物活性的含氮杂环构建方面取得重要进展,相关研究成果近日在线发表于《德国应用化学》,并被推荐为该期刊的封面文章重点介绍。 含氮杂环化合物广泛存在于各类药物分子中,在药物合成和发现过程中扮演着举足轻重的作用。如何快速构建含氮杂环分子骨架并高效地进行结构多样性合成,
氮杂环卡宾表面共价聚合研究获进展
近日,中国科学院国家纳米科学中心任金东课题组与中国科学院院士、物理研究所研究员高鸿钧,联合德国明斯特大学,在氮杂环卡宾表面共价聚合方面取得新进展。相关研究成果以On-surface synthesis of ballbot-type N-heterocyclic carbene polymers
我国学者在氮原子插入饱和氮杂环反应方面取得进展
图 氮原子插入四氢吡咯环构建多氧化态1,2‑二氮六元环 在国家自然科学基金项目(批准号:22271148)等资助下,南京大学陆红健团队在饱和氮杂环的氮原子插入反应方面取得进展,相关成果以“吡咯烷的氮原子插入骨架编辑(Skeletal editing of pyrrolidines by nit
我国在官能化的异腈用于含氮杂环的合成中取得研究成果
具有重要生物活性的小分子往往含有杂环子结构,其中含氮杂环出现的频率最高,杂环的种类也最丰富。因此,发展高效的含氮杂环的构建方法一直是有机合成研究的热点,在现代药物研发过程中发挥了重要的作用。近年来,钯催化的异腈插入反应受到越来越多的关注,极大地丰富了异腈这类结构特殊的化合物在有机合成中的应用。但
有机合成中常见的杂环的合成
杂环化合物是分子中含有杂环结构的有机化合物。构成环的原子除碳原子外,还至少含有一个杂原子。是数目最庞大的一类有机化合物。最常见的杂原子是氮原子、硫原子、氧原子。可分为脂杂环、芳杂环两大类。杂环化合物普遍存在于药物分子的结构之中。下面对往期发布过的有机合成中常见的芳杂环的合成方法进行汇总,方便大家学习
北大在有机催化领域取得重要进展
北京大学化学生物学与生物技术学院黄湧课题组最近实现了首例利用氮杂卡宾的弱氢键作用来进行不对称催化。这项工作已经发表在《自然·通讯》杂志 (Nature Communications,2014,5:3437,DOI:10.1038/ncomms4437)。该工作由北京大学深圳研究生院独立完成,
关于氮杂硫代嘌呤的药物使用介绍
氮杂硫代嘌呤别名是 氮杂硫代嘌呤;咪唑巯嘌呤;依木兰;义美仁 ,硫唑嘌呤。 【注意事项】 1.毒性反应与巯嘌呤相似,大剂量及用药过久时可有严重骨髓抑制,可导致粒细胞减少,甚至再生障碍性贫血,一般在6~10日后出现。也可有中毒性肝炎、胰腺炎、脱发、粘膜溃疡、腹膜出血、视网膜出血、肺水肿以及厌食
研究发现氮杂芳烃与醚类的直接偶联反应
中国科学院理化技术研究所研究员王乃兴课题组近年来在稳定化合物的C(sp3)-H键官能团化反应方面取得一系列进展,发展了苯乙烯与醇、酮、腈、醚类的双官能团化反应,在有机化学核心刊物Org. Lett.等发表了多篇文章。最近德国《合成有机化学》(Synthesis, 2019, 51, 4542)评
高效液相色谱法用于N亚硝胺、多环芳烃和杂环芳烃的测定
腌腊肉品中常添加硝酸盐或亚硝酸盐作发色剂用,由于添加量过大或自身的还原作用在肉品中生成 N-亚硝胺。N-亚硝胺可诱发肝癌、结肠癌等。某些 N-亚硝胺化合物,如 N-亚硝基二甲胺、N-亚硝基二乙胺、N-亚硝基四氢吡咯等也是一类致癌物质。过去采用气相色谱法测定食物中的挥发性亚硝胺,其中仅色谱测定一步便需
二氮杂菲分光光度法原理和应用
二氮杂菲分光光度法:本法适用于生活饮用水及其水源水中铁的测定。在pH3〜9条件下,低价铁离子与二氮杂菲生成稳定的橙色络合物,在波长510 nm处有最大吸收。二氮杂菲过量时,控制溶液pH为2. 9〜3. 5,可使显色加快。水样先经加酸煮沸溶解难溶的铁化合物,同时消除氰化物、亚硝酸盐、多磷酸盐的干扰。加
酰胺类萃取剂氮杂冠醚对U(Ⅵ)Th(Ⅳ)Sr(Ⅱ)萃取研究
研究和开发新的萃取体系对于核能可持续发展具有重要意义。本论文主要研究了2个长链二酰胺类萃取剂、2个吡啶酰胺和1个氮杂冠醚共计5种萃取剂的合成与表征;研究了所合成的酰胺类萃取剂对U(Ⅵ)和Th(Ⅳ)的萃取;研究了氮杂冠醚对Sr(Ⅱ)的萃取;重点考察了上述萃取体系中稀释剂、硝酸浓度、萃取剂浓度、盐析剂以
叠氮乙酸甲酯-用途与合成方法
2-叠氮乙酸甲酯被广泛用于炔叠氮化click化学合成三唑衍生物。其中一些例子包括合成香豆素-三唑衍生物作为潜在的抗疟原虫药物和含有大环三唑类化合物的组蛋白去乙酰化酶-1(HDAC1)抑制剂。它可以通过KnoevenagelChemicalbook缩合反应合成各种吡咯衍生物,用在有机串联太阳能电池用近
关于氮杂硫代嘌呤的用法用量和适应症介绍
【适应症】 硫唑嘌呤主要用于异体移植时抑制免疫排异,多与皮质激素并用,或加用抗淋巴细胞球蛋白(ALG),疗效较好。也广泛用于类风湿性关节炎、全身性红斑狼疮,自身免疫性溶血性贫血、特发性血小板减少性紫癜、活动性慢性肝炎、溃疡性结肠炎、重症肌无力、硬皮病等自身免疫性疾病。对慢性肾炎及肾病综合征,其疗
大连化物所催化合成吖庚因类杂环研究取得新进展
近日,中国科学院大连化学物理研究所催化杂环合成研究组万伯顺、王春翔等人在催化环加成反应研究中取得新进展,成功实现了氮杂七元环吖庚因类杂环的选择性合成,相关结果以通讯的形式发表在近期的《德国应用化学》上(Angew. Chem. Int. Ed. 2016, 55, 2861-2865)。 不饱
睿科仪器应邀参加杂环农药系列丛书编写研讨会
随着各国对食品安全问题关注度的不断提高,食品安全检测技术以及食品安全检测数据质量控制变成了当今热烈讨论的话题。近期,为贯彻落实《食品安全法》,实施“科技兴检”战略,支撑质检事业更好更快发展,中国检验检疫科学研究院的资深专家组织了近20家省级出入境检验检疫局检验检疫技术中心的技术骨干代表在厦门举行
杂环芳纶聚合物5000升聚合在航天科工试产成功
近日,中国航天科工六院年产50吨F-12高强有机纤维生产5000升聚合设备试生产成功,合成聚合液的黏度满足工艺指标要求,并成功用于纺丝,纤维性能达到设计指标。这也是我国首例杂环芳纶聚合物5000升聚合取得成功。 在试生产前,首先采用逐步放大聚合反应的方法对原料和生产工艺进行充分验证,然
我所催化合成吖庚因类杂环研究取得新进展
近日,大连化物所催化杂环合成研究组(202组)万伯顺、王春翔等人在催化环加成反应研究工作中取得新进展,成功实现了氮杂七元环吖庚因类杂环的选择性合成,相关结果以通讯的形式发表在近期的《德国应用化学》上(Angew. Chem. Int. Ed. 2016, 55, 2861-2865)。 不饱
杂环化合物的命名方法
杂环化合物常以俗名命名,较少用系统命名。系统命名是指以相应的碳环为母体而命名。例如,含两个不饱和键的环戊二烯称为茂,与之相应的一种杂环化合物,例如吡咯,可以看成是由“NH”取代了茂中的“CH2”而成 ,称为氮(杂)茂。依此类推,吡啶称为氮(杂)苯,喹啉称为氮(杂)萘等,但一般仍习惯于用俗名命名。杂环
简述杂环化合物的命名方法
杂环化合物常以俗名命名,较少用系统命名。系统命名是指以相应的碳环为母体而命名。例如,含两个不饱和键的环戊二烯称为茂,与之相应的一种杂环化合物,例如吡咯,可以看成是由“NH”取代了茂中的“CH2”而成 ,称为氮(杂)茂。依此类推,吡啶称为氮(杂)苯,喹啉称为氮(杂)萘等,但一般仍习惯于用俗名命名。
成都生物所在4氮杂吲哚啉的绿色合成研究中获进展
电子供体-受体复合物(EDAcomplex)具有无需额外光敏剂、转化率高、环境友好等优势,在构建具有挑战性的C-X(X = C、N、O、S、P)键的反应中取得了进展。其中,N-吡啶盐类化合物凭借本身的缺电子特性而作为EDA复合物的电子受体参与反应,实现了高效C-C、C-B或C-S键构建以及吡啶的区位
DNA化学合成的应用
随着DNA合成技术的发展,特别是自动化合成技术的引入,人们能简便、快速、高效地合成其感兴趣的DNA片段。目前,DNA合成技术已成为分子生物学研究必不可少的手段,并且已在基因工程、临床诊断和治疗、法医学等各个领域中日益发挥重要的作用。1. DNA合成在基因工程和分子生物学研究中的应用1.1合成基因
DNA化学合成的应用
随着DNA合成技术的发展,特别是自动化合成技术的引入,人们能简便、快速、高效地合成其感兴趣的DNA片段。目前,DNA合成技术已成为分子生物学研究必不可少的手段,并且已在基因工程、临床诊断和治疗、法医学等各个领域中日益发挥重要的作用。 1. DNA合成在基因工程和分子生物学研究中的应用
DNA化学合成的应用
随着DNA合成技术的发展,特别是自动化合成技术的引入,人们能简便、快速、高效地合成其感兴趣的DNA片段。目前,DNA合成技术已成为分子生物学研究必不可少的手段,并且已在基因工程、临床诊断和治疗、法医学等各个领域中日益发挥重要的作用。 1. DNA合成在基因工程和分子生物学研究中的应用
DNA化学合成的应用
随着DNA合成技术的发展,特别是自动化合成技术的引入,人们能简便、快速、高效地合成其感兴趣的DNA片段。目前,DNA合成技术已成为分子生物学研究必不可少的手段,并且已在基因工程、临床诊断和治疗、法医学等各个领域中日益发挥重要的作用。 1. DNA合成在基因工程和分子生物学研究中的应用1.1合成基因目
化学合成反应器
化学合成反应器取代圆底烧瓶用直观的化学合成反应器取代圆底烧瓶、夹套玻璃反应器、冰浴、油浴及冷却器。 创新型加热和冷却技术可精确控制和保持反应温度,从而避免杂质并确保一致的工艺开发。 实验室反应器平台通过触摸屏进行操作,并可记录整个实验过程中的所有数据,因此研究人员能够做出更明智的决策。