神经生物学|线粒体和可卡因成瘾有什么关系?
线粒体是细胞的动力源与许多细胞功能有关。多年来,科学家们已经发现脑细胞的线粒体是导致抑郁症、躁郁症、焦虑和应激反应等大脑紊乱的关键之一。众所周知,长期吸食可卡因可导致精神障碍,突然停药后也会出现抑郁、焦虑、易激怒、失眠等不良反应。 最近,马里兰大学医学院(University of Maryland School of Medicine,UMSOM)的科学家在《Neuron》报道了一条导致可卡因成瘾的关键线粒体原因,并且找到了封闭这条途径的方法。 让小鼠反复接触可卡因,研究人员发现成瘾小鼠大脑奖赏区伏隔核(nucleus accumbens,NAc))参与线粒体裂变(fission)的动力相关蛋白1(dynamin-related protein-1,Drp1)水平增加。线粒体裂变抑制剂Mdivi-1,可阻断小鼠觅药反应。随后,研究人员又通过遗传操纵大脑细胞线粒体裂变分子,也阻断了小鼠对可卡因的上瘾反应。 “我们又发现......阅读全文
可卡因苯丙胺调节转录物的功能作用
中文名称可卡因苯丙胺调节转录物英文名称cocaine amphetamine-regulated transcript;CART定 义下丘脑分泌的瘦蛋白依赖的内源性饱食肽。其抑制摄食的作用是通过下丘脑和脑干参与调节食欲和代谢的神经元,引起肾上腺皮质酮分泌所致。应用学科生物化学与分子生物学(一级学科
尿液中可卡因的GCMS分析
图1. 临界浓度(150 ng/ml)下,萃取尿样的可卡因及其代谢物的总离子色谱。 本文讨论了针对可卡因分析而制定的法规准则,并介绍了用于可卡因及其主要代谢物鉴定和定量的 GC-MS方法。此方法遵照美国物质滥用和精神健康服务管理局 (SAMHSA) 制定的准则,并且覆盖了宽泛的分析物浓度范围,
揭秘可卡因的来历、作用机制以及危害
可卡因是从从原产自南美洲的古柯树叶子中提炼出来的,几千年来,这些树叶都是当地居民使用的日常材料,比如印加人,他们将叶子咀嚼或泡成茶来饮用,因为这能够为印加人保持清醒,并提供能量。 1859年,德国化学家阿尔伯特-尼曼最终分离出了这种活性成分,并命名为可卡因,同时这也是西方文化中该药物作为要用和
可卡因与可口可乐——双面古柯叶
作为世界主要毒品之一,可卡因受到禁毒人士的深恶痛绝;作为风靡全球的汽水,可口可乐受到各国人民的喜爱。这两个截然不同的产品,却有着千丝万缕的联系。把它们联系在一起的,就是本文的主角——古柯叶。 古柯叶的前世今生:从药物到毒品 一说可卡因,总会让人联想到毒品,大家免不了要大谈特谈一番。不过可卡因
线粒体作用
⑴若将纯化的正常的线粒体与纯化的细胞核在一起保温,并不导致细胞核的变化。但若将诱导生成PT孔道的线粒体与纯化的细胞核一同保温,细胞核即开始凋亡变化。⑵细胞死亡调节蛋白不论是抑制死亡的bcl-2家族还是促进细胞死亡的Bax家族均以线粒体作为靶细胞器。bcl-2蛋白的C端的疏水肽段能插入线粒体外膜。事实
线粒体基因
线粒体基因:mtDNA,线状、环状,能单独复制,同时受核基因控制。哺乳动物:无内含子,有重叠基因突变率高。
Nature-Immunology:李斯特菌劫持巨噬细胞线粒体自噬新机制
线粒体自噬(mitophagy)是一类选择性自噬过程,通过特异性降解细胞内受损的或者多余的线粒体从而完成对细胞代谢水平和命运决定的调控。然而生理或者病理条件下哪些物质可以诱发线粒体自噬反应,又由哪些分子特异性介导了线粒体自噬通路的激活,是此研究领域仍亟需解答的关键科学问题。 中国科学院上海营养
线粒体分裂通过调控相变促进巨噬细胞吞食癌细胞
免疫治疗为肿瘤治疗带来革命。目前,主流的免疫治疗是促进T细胞对癌细胞的细胞毒性作用,诱导免疫细胞吞噬癌细胞成为下一代免疫治疗的重要思路。许多治疗性单克隆抗体能诱导巨噬细胞吞食癌细胞(1),其作用机制主要是两种:1. Fcγ受体介导的吞噬,称为抗体依赖细胞吞噬效应(ADCP),典型是临床常用的赫赛
Science:细胞的能量工厂如何免于攻击损伤
线粒体是细胞中的能量工厂,其对于机体健康非常重要,当线粒体受到攻击,比如毒物、环境压力或遗传突变时,细胞就会对其进行修复从而形成可用的线粒体;如今刊登在Science上的一项研究报告中,来自索尔克研究所的科学家们揭开了一种特殊机制,即细胞如何诱发针对危险的关键反应,从而为理解线粒体疾病、癌症、糖
家乐福蛋糕成分标注现可卡因-向顾客致歉
法国连锁零售商家乐福阿根廷分公司6日因一家蛋糕供应商在食品成分中标注“12克可卡因”向顾客致歉。 家乐福在阿根廷开设500多家店面。这家企业说,为这个“低俗的玩笑”抱歉。法新社报道,这显然是蛋糕供应商的一名员工所为。 家乐福发表声明说:“我们家乐福阿根廷公司想让顾客安心,家乐福品牌蛋
质检总局再次通报-国产红牛均未检出可卡因
国家质检总局昨天再次通报,对海南红牛饮料有限公司生产的5个批次的红牛维生素功能饮料进行了检测,均未检出可卡因。 此前,按照质检总局的部署,北京市、湖北省分别对红牛维他命饮料有限公司、红牛维他命饮料(湖北)有限公司生产的红牛饮料进行了可卡因含量专项检测,均未检出可卡因。至此,质检总局进出口食
PNAS:可卡因摄入过量如何导致脑细胞死亡?
近日,来自美国约翰斯霍普金斯大学医学院的研究人员利用小鼠进行研究发现高剂量可卡因会通过触发过度自噬导致脑细胞死亡,同时他们还发现了一种小分子化合物能够改善这一情况。相关研究结果发表在国际学术期刊PNAS上。 在1990年发现脑细胞使用一氧化氮进行细胞交流之后,Solomon Snyder教授及
蛋白质Rac1触发可卡因成瘾
纽约西奈山医疗中心一项新的研究表明:反复接触可卡因会降低大脑中枢系统的正常运作所必需的蛋白质的活性,从而提高了中枢对可卡因的依赖性,从而导致成瘾发生。相关研究论文发表在4月22日的Nature Neuroscience杂志上,该研究揭示了可卡因是如何改变小鼠模型中大脑神经元中枢形状和大小的。
免疫检测法检测可卡因的特点介绍
免疫检测法(mimunoassay)具有操作简便、高效、灵敏、特异、适合大规模检测等优点,但要采用这种,必须获得具有抗原活性的可卡因全抗原。通常分子量低于1000的物质不具有免疫原性,进入机体不能产生抗体,必须与载体蛋白偶联形成全抗原,方能具有免疫原性。载体蛋白中含有的活性基团主要有羧基、氨基、
关于常见的可卡因类及制剂的介绍
(1)古柯叶(古柯灌木的叶子,是提炼可卡因的原料,也是南美地区含微量可卡因饮品食品来源),南美地区千年历史已经证明咀嚼古柯叶不会上瘾,因为叶子中可卡因含量极低,按秘鲁库斯科的风俗折算每天摄入量不超过0.5mg; (2)可卡膏(称为basulea,一种灰白、奶白或米色的粉状物,颗粒较粗,为潮湿的
RO5263397:治疗可卡因成瘾的潜在药物
可卡因(Cocaine)又称为古柯碱,是一种由古柯叶中提练出的莨菪烷型生物碱,分子式C17H21NO4。它是最强的天然中枢兴奋剂,其化学名为苯甲基芽子碱(化学结构式见图1所示),国际理论与应用化学联合会(IUPAC )对其系统命名为methyl (1R, 2R, 3S, 5S)-3 -(benz
突触核蛋白的发病机制介绍
损害线粒体:Nakamura等发现在哺乳动物的多种细胞中过量表达α-突触核蛋白可以造成线粒体的裂解,而在胞内的其他细胞器的形态变化很小(如高尔基复合体),α-突触核蛋白不抑制线粒体的融合而表现出促进其分裂,并且不依靠线粒体分裂时需要的主要分裂蛋白Drp1[42];另外过量表达的α-突触核蛋白能够
首都医科大刘磊、吉训明PLOS最新成果
作为线粒体动力学中的基本过程,线粒体融合、分裂和运输是由几个主要组件调控的,其中包括Miro。作为一个具有高分子量的非典型Rho样小GTPase,Miro中的GDP/GTP交换可能需要鸟嘌呤核苷酸交换因子(GEF)的帮助。然而,用于Miro的GEF的还没有得以确定。近期,来自首都医科大学北京脑重
复旦大学:发现前列腺癌线粒体分裂调控新机制
2017年4月27日,国际顶级学术期刊《PLOS GENEtics》发表了复旦大学生命科学学院王陈继青年副研究员的一篇研究论文,研究成果揭示了前列腺癌中SPOP基因突变促进肿瘤的部分潜在分子机制。复旦大学生命科学学院金晓锋博士和王洁博士为本文的共同第一作者,王陈继青年副研究员和余龙教授为本文的共
肥胖会因-RalA-激活而导致白色脂肪细胞线粒体破碎和功能障碍
肥胖已成为一种世界性流行病,大大增加了 2 型糖尿病、非酒精性脂肪性肝炎和其他心脏代谢异常的发病率。在肥胖的发展过程中,白色脂肪组织(WAT)长期扩张,并发生以激素不敏感、炎症、纤维化和细胞凋亡为特征的新陈代谢变化。线粒体在健康脂肪细胞中发挥着重要的代谢作用,肥胖者的脂肪细胞中线粒体含量比瘦弱者
线粒体分离实验—从组织中分离线粒体
实验材料肝脏试剂、试剂盒MS仪器、耗材匀浆器实验步骤1. 取出肝脏,注意不要弄破胆囊。放进一置于冰上的烧杯中,剪去任何结缔组织。称其质量后放回烧杯中。用锋利的剪刀、手术刀或剃须刀片将之切成 1~2 mmol/L 的薄片,用匀浆缓冲液(1x MS) 冲洗两次以去除大部分的血。转移至匀浆器中。加入足够的
营养与健康所发现李斯特菌劫持巨噬细胞线粒体自噬机制
2月25日,国际学术期刊《自然-免疫学》(Nature Immunology)在线发表了中国科学院上海营养与健康研究所钱友存课题组的最新研究成果“Listeria hijacks host mitophagy through a novelmitophagy receptor to evade
动物所有关miRNA在心肌保护中的作用研究取得新成果
miRNA为一类非编码的微小RNA,近年来有关miRNA在心脏中的功能的研究受到广泛关注。心肌缺血、心肌细胞能量代谢不足会导致心肌细胞凋亡的发生,进而发生心肌梗死。心肌梗死涉及复杂的分子机制,有报道显示,梗死的心肌组织与正常心肌组织相比较,miRNA表达谱存在差异,一些miRNA表
钱友存组鉴定出新型线粒体自噬受体
线粒体自噬(mitophagy)是一类选择性自噬过程,通过特异性降解细胞内受损的或者多余的线粒体从而完成对细胞代谢水平和命运决定的调控【1】。然而生理或者病理条件下哪些物质可以诱发线粒体自噬反应,又由哪些分子特异性介导了线粒体自噬通路的激活,是此研究领域仍亟需解答的关键科学问题【2】。钱友存课题
线粒体的组成
线粒体的化学组分主要包括水、蛋白质和脂质,此外还含有少量的辅酶等小分子及核酸。蛋白质占线粒体干重的65-70%。线粒体中的蛋白质既有可溶的也有不溶的。可溶的蛋白质主要是位于线粒体基质的酶和膜的外周蛋白;不溶的蛋白质构成膜的本体,其中一部分是镶嵌蛋白,也有一些是酶。线粒体中脂类主要分布在两层膜中,
线粒体的分布
线粒体分布方向与微管一致,通常分布在细胞功能旺盛的区域:如在肾脏细胞中靠近微血管,呈平行或栅状排列;在肠表皮细胞中呈两极分布,集中在顶端和基部;在精子中分布在鞭毛中区。在卵母细胞体外培养中,随着细胞逐渐成熟,线粒体会由在细胞周边分布发展成均匀分布。线粒体在细胞质中能以微管为导轨、由马达蛋白提供动
线粒体的形状
线粒体一般呈短棒状或圆球状,但因生物种类和生理状态而异,还可呈环状、线状、哑铃状、分杈状、扁盘状或其它形状。成型蛋白(shape-forming protein)介导线粒体以不同方式与周围的细胞骨架接触或在线粒体的两层膜间形成不同的连接可能是线粒体在不同细胞中呈现出不同形态的原因。
线粒体分离实验
实验材料 细胞试剂、试剂盒 RSBMS 缓冲液仪器、耗材 Dounce 匀浆器实验步骤 1. 用 11 ml 冰上预冷过的 RSB 重新悬浮细胞,转移到一个 15 ml 的 Dounce 匀浆器中RSB(使组织培养细胞膨胀的低渗缓冲液)10 mmol/L NaCl2.5 mol/L MgCl210
线粒体的结构
线粒体由外至内可划分为线粒体外膜(OMM)、线粒体膜间隙、线粒体内膜(IMM)和线粒体基质四个功能区。处于线粒体外侧的膜彼此平行,都是典型的单位膜。其中,线粒体外膜较光滑,起细胞器界膜的作用;线粒体内膜则向内皱褶形成线粒体嵴,负担更多的生化反应。这两层膜将线粒体分出两个区室,位于两层线粒体膜之间
线粒体分离实验
从组织培养细胞中分离线粒体 从组织中分离线粒体 用蔗糖密度梯度法纯化线粒体 实验材料 细胞