铜上溅射沉积铀薄膜AES研究
在俄歇电子能谱仪超高真空室内,采用离子束溅射沉积方法在多晶Cu上沉积了铀薄膜,采用俄歇电子能谱技术(AES)研究铀薄膜的生长方式,铀、铜的相互作用及退火引起U膜成分结构变化。沉积初期观察到铀与铜发生相互作用,随着铀薄膜厚度的增加,UOPV/CuLMM俄歇跃迁峰强度值变化说明铀薄膜为层状+岛状生长。退火促进了界面扩散,随着温度的升高,铀与铜发生了相互作用和扩散,温度继续升高,铀与碳形成了铀碳化物。......阅读全文
铜上溅射沉积铀薄膜AES研究
在俄歇电子能谱仪超高真空室内,采用离子束溅射沉积方法在多晶Cu上沉积了铀薄膜,采用俄歇电子能谱技术(AES)研究铀薄膜的生长方式,铀、铜的相互作用及退火引起U膜成分结构变化。沉积初期观察到铀与铜发生相互作用,随着铀薄膜厚度的增加,UOPV/CuLMM俄歇跃迁峰强度值变化说明铀薄膜为层状+岛状生长。退
薄膜溅射沉积系统共享应用
仪器名称:薄膜溅射沉积系统仪器编号:16041495产地:中国生产厂家:AJA型号:ATC 2200-V出厂日期:201605购置日期:201612所属单位:集成电路学院>微纳加工平台>薄膜工艺放置地点:微电子所新所一楼108固定电话:固定手机:固定email:联系人:窦维治(010-6278109
用AES研究铝薄膜与基体金属铀之间的界面反应
在俄歇电子能谱(AES)仪超高真空分析室中利用氩离子溅射沉积方法将Al沉积在U基体上。对不同Al沉积量的铀表面实时采集AES和低能电子损失谱(EELS),以研究沉积Al原子与U表面原子间的相互作用以及Al膜的生长过程。将实验样品进行退火处理后进行深度剖析。研究结果表明:Al沉积在U基体上是以岛状方式
铀与UO2表面铝薄膜生长行为的俄歇电子能谱分析
主要利用俄歇电子能谱(AES)原位分析了室温下铀与UO2表面铝薄膜的生长行为。在俄歇电子能谱仪超高真空室中,利用Ar+枪溅射铝靶,使其沉积到铀基体上,然后利用电子枪适时采集表面俄歇电子能谱, 原位分析铝薄膜的生长过程。在UO2表面沉积铝膜时,先往真空室中充入氧气,将清洁铀表面氧化成UO2, 然后再溅
UO2表面铝薄膜生长过程的AES原位研究
室温下在俄歇电子能谱(AES)分析仪超高真空室中,通入适量O2,促使基底U表面氧化,生成UO2,然后利用Ar+枪溅射铝箔,使铝沉积在UO2表面形成Al薄膜。沉积过程中实时采集UO2表面的AES谱和低能电子损失谱(EELS),原位分析铝薄膜在UO2表面的生长过程和膜间界面反应。研究表明,室温下,UO2
铀表面氮化对铀上镀钛界面结合的影响
金属铀在核燃料领域有着非常重要的应用,然而由于铀拥有特殊的外层电子,因此性质非常活泼,极易遭受腐蚀,铀的使用过程中必须考虑腐蚀防护。通过物理气相沉积的方法在铀表面制备防腐蚀薄膜是一种有效地防腐蚀手段,但是实际工艺中,铀易氧化的特性使得膜基界面形成氧化层,影响长期应用中的膜基结合力。本文采用离子氮化技
铀基体上铝薄膜生长行为和膜基界面反应研究
本论文主要利用表面分析技术俄歇电子能谱(AES)较系统的研究了铝薄膜在铀基体上的生长行为特征以及膜基界面反应,并采用密度泛函方法,模拟计算了铝原子在金属铀和UO2(001)面上的吸附能,对实验结果从理论上进行了合理的解释和推论。主要研究结果有: 1) 室温下,在金属铀表面逐步沉积铝原子的过程中,沉积
小型离子溅射仪可以用来溅射铜吗
小型的离子溅射仪分为低真空离子溅射和高真空离子溅射,根据原理又分为高电压直流、低电压磁控和离子束三种原理,目前市面上的离子溅射大部分是可以满足您的需求,你可以查看上海禾早生产的离子溅射仪。
其他薄膜沉积设备的薄膜沉积技术分类
薄膜沉积技术可以分为化学气相沉积(CVD)和物理气相沉积(PVD)。对于CVD工艺,这包括原子层沉积(ALD)和等离子体增强化学气相沉积(PECVD)。PVD沉积技术包括溅射,电子束和热蒸发。CVD工艺包括使用等离子体将源材料与一种或多种挥发性前驱物混合以化学相互作用并使源材料分解。该工艺使用较
2013全国表面分析科学与技术应用学术会议在京召开
四川材料与工艺研究所 陆雷 来自四川材料与工艺研究所陆雷老师做了《铍薄膜的射频制备技术及性能研究》的报告。 陆老师介绍了一下自己的研究背景,以及薄膜制备与AES联用装置、射频磁控溅射技术特点与原理、薄膜制备工艺流程,Be薄膜的AFM、SEM、AES、XPS分析。 研究表明采用射频磁控溅射法成功
关于俄歇电子能谱仪研究晶界扩散的方法介绍
研究晶界扩散的方法有三种:溅射剖面法、沿晶断裂法和表面累积法。 溅射剖面法是让溶质扩散到多晶试样中,然后用离子溅射剖蚀表面层,同时用AES测量,获得浓度 深度剖面图; 沿晶断裂法是把溶质蒸发到多晶试样的清洁表面,并进行热处理使其晶界扩散。然后在AES仪的超高真空中使试样沿晶断裂,利用细电子束斑
类金刚石薄膜的电子结构及光学性质
以直流磁控溅射制备了类金刚石薄膜,采用原子力显微镜(AFM)观察薄膜的表面形貌,采用俄歇电子能谱(AES)分析薄膜的化学键和电子结构。将参数D定义为俄歇电子能谱(AES)中最大正峰和最低负峰之间的距离,用俄歇电子能谱中的D值求得不同沉积气压条件下制备的薄膜的sp2键的百分含量和sp2键与sp3键比率
贫铀表面的Ar气脉冲辉光放电清洗
由于贫铀特有的化学性质,其表面在大气中始终存在一层影响界面结合的氧化层。为了增强薄膜与铀基体之间的有效结合,需要采用先进的辉光放电技术对铀基体进行薄膜沉积前的原位清洗。铀样品经金相砂纸逐级打磨并抛光,将样品放入俄歇电子能谱仪(AES)预制室,充入Ar气进行辉光放电清洗,清洗后用俄歇电子能谱仪对表面进
常见的薄膜太阳能电池组件的制备流程介绍
薄膜太阳能电池是缓解能源危机的新型光伏器件,第一代太阳能电池是单晶和多晶硅电池,第二代太阳能电池采用了吸光系数大的材料,电池厚度不用太厚也足够吸收太阳光,因此称为薄膜太阳能电池。根据吸光材料的不同,常见的薄膜太阳能电池分类有:碲化镉(CdTe)、铜铟镓硒(CIGS)、染料敏化(DSSC)和有机聚合物
常见的薄膜太阳能电池组件的制备流程介绍
薄膜太阳能电池是缓解能源危机的新型光伏器件,第一代太阳能电池是单晶和多晶硅电池,第二代太阳能电池采用了吸光系数大的材料,电池厚度不用太厚也足够吸收太阳光,因此称为薄膜太阳能电池。根据吸光材料的不同,常见的薄膜太阳能电池分类有:碲化镉(CdTe)、铜铟镓硒(CIGS)、染料敏化(DSSC)和有机聚合物
磁致溅射仪层生长型薄膜的形成
这种生长类型的特点是,蒸发原子首先在基片表面以单原子层的形式均匀地翟盖一层,然后再在三维方向上生长更多的层。这种生长方式多数发生在基片原子与蒸发原子间的结合能接近于蒸发原子间的结合能的情况下。层生长型的过程大致如下:入射到基片表面的原子,经过表面扩散并与其它原子碰撞后形成二维的核,二维核捕捉周围
磁致溅射仪核生长型薄膜的形成
这种类型形成过程的特点是,到达基片上的原子首先凝聚成核,后续飞来的原子不断集聚在核的附近使核在三维方向不断成长,最终形成薄膜。大部分薄膜的形成过程都属于这种类型。核生长型的薄膜其生长过程可以分为如下四个阶段。 (l)成核阶段碰撞到基片上的原子,其中一部分与基片原子交换的能量很少,仍具有相当大的
铀铌合金真空热氧化膜的俄歇电子能谱研究
用俄歇电子能谱(AES)研究了高真空下,环境温度对铀铌合金真空氧化膜的影响。当温度高于603K时,氧化膜表面结构发生明显改变,表面主要由铀碳化合物、金属态的U和Nb组成。利用Ar+溅射铀铌合金真空热氧化膜进行深度分布分析,发现在热氧化膜的表面氧含量很小,而在热氧化膜的内部有氧增多的现象。
磁致溅射仪层核生长型薄膜的形成
在基体和薄膜原子相互作用特别强的情况下,才容易出现层核生长型。首先在基片表面生长1-2层单原子层,这种二维结构强烈地受基片晶格的影响,晶格常数有较大的畸变。然后再在这原子层上吸附入射原子,并以核生长方式生成小岛,最终形成薄膜。
动态离子束混合技术制备氧化铬薄膜的俄歇电子能谱研究
本文介绍的动态离子束混合技术制备氧化铬薄膜系在不锈钢基体上进行1keV氩离子束溅射沉积铬(同时通入一定量的O),并用100keV的氩离子束或氧离子束轰击该样品。对两种离子束轰击形成的氧化铬薄膜进行了X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)和俄歇电子
镁合金表面PVD膜层的制备与腐蚀破坏
镁合金在汽车、电子以及航空航天工业上的应用日益广泛,但较差的耐蚀性限制了其在这些领域的推广应用。气相沉积技术作为一种绿色防腐技术正开始受到镁合金表面处理工作者的关注。本文采用磁控溅射、离子注入等现代化技术手段在AZ31镁合金表面制备了多种防护性膜层,利用场发射扫描电镜(FESEM)、原子力显微镜(A
薄膜沉积控制仪的相关知识普及
薄膜沉积控制仪包括反应腔室,还包括至少两套成膜机构,所述至少两套成膜机构分别对应待成膜基板的至少两个成膜区域;每套所述成膜机构配置为在所述反应腔室内形成一种成膜环境,且各套所述成膜机构所形成的成膜环境中至少一项工艺参数不同,以分别在对应的成膜区域形成薄膜性能或薄膜参数不同的薄膜。 薄膜设备
其他薄膜沉积设备的重要性
沉积是半导体制造工艺中的一个非常重要的技术,其是一连串涉及原子的吸附、吸附原子在表面扩散及在适当的位置下聚结,以渐渐形成薄膜并成长的过程。在一个新晶圆投资建设中,晶圆厂80%的投资用于购买设备。其中,薄膜沉积设备是晶圆制造的核心步骤之一,占据着约25%的比重。
LAB18薄膜沉积系统共享
仪器名称:LAB18薄膜沉积系统仪器编号:12028282产地:中国生产厂家:Kurt型号:KJLC出厂日期:201204购置日期:201212所属单位:集成电路学院>微纳加工平台>薄膜工艺放置地点:微电子所新所一层微纳平台固定电话:固定手机:固定email:联系人:窦维治(010-62781090
无扩散阻挡层Cu(C)和Cu(Ti)薄膜的制备及表征
随着超大规模集成电路中器件和互连线尺寸的不断减小,厚度薄且具有良好的阻挡性能及电学性能的扩散阻挡层的制备变得越来越具有挑战性,必须要引进新材料和新工艺来解决这一问题,因此向Cu膜中直接加入少量元素来制备Cu种籽层的无扩散阻挡层结构成为了该领域的重要研究内容。本论文采用磁控溅射在单晶Si(100)基体
俄歇电子能谱成分深度分析
AES的深度分析功能是AES最有用的分析功能,主要分析元素及含量随样品表面深度的变化。镀铜钢深度分析曲线采用能量为500eV~5keV的惰性气体氩离子溅射逐层剥离样品,并用俄歇电子能谱仪对样品原位进行分析,测量俄歇电子信号强度I (元素含量)随溅射时间t(溅射深度)的关系曲线,这样就可以获得元素在样
俄歇电子能谱仪的应用领域
通过正确测定和解释AES的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等多种情报。定性分析定性分析主要是利用俄歇电子的特征能量值来确定固体表面的元素组成。能量的确定在积分谱中是指扣除背底后谱峰的最大值,在微分谱中通常规定负峰对应的能量值。习惯上用微分
研究揭示铜上双层石墨烯的双面各异掺杂机制
松山湖材料实验室-北京大学教授刘开辉与合作者研究揭示了铜上双层石墨烯的双面各异掺杂机制,解决了原子级石墨烯防腐技术易受界面扩散和电化学腐蚀侵害的难题,成功实现了对铜箔的超高效防腐。近日,相关成果在线发表于《自然-通讯》。 记者获悉,该技术可在室温下保护铜箔达5年以上、80 ℃水中浸泡保护铜达1
研究揭示铜上双层石墨烯的双面各异掺杂机制
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512786.shtm松山湖材料实验室-北京大学教授刘开辉与合作者研究揭示了铜上双层石墨烯的双面各异掺杂机制,解决了原子级石墨烯防腐技术易受界面扩散和电化学腐蚀侵害的难题,成功实现了对铜箔的超高效防腐。近
ITO半导体导电膜
掺锡氧化铟(IndiumTinOxide),一般简称为ITO。因此,它是液晶显示器(LCD)、等离子显示器(PDP)、电致发光显示器(EL/OLED)、触摸屏(TouchPanel)、太阳能电池以及其他电子仪表的透明电极zui常用的薄膜材料。 二、发展 真正进行ITO薄膜的研究工作还是19世纪末,当