高速逆流色谱常用基本溶剂体系
高速逆流色谱常用基本溶剂体系表被分离物质种类基本两相溶剂体系辅助溶剂非极性或弱极性物质正庚(己)烷-甲醇氯烷烃正庚(己)烷-乙睛氯烷烃正庚己烷-甲醇(或乙睛)-水氯烷烃中等极性物质氯仿-水甲醇、正丙醇、异丙醇乙酸乙酯-水正己烷、甲醇、正丁醇极性物质正丁醇-水甲醇、乙酸上表中是根据被分离物质的极性列出一些基本的可供参考的溶剂体系,它包括非水体系和含水体系。溶剂系统的选择对于HSCCC分离十分关键。遗憾的是到目前为止溶剂系统的选择还没有充分的理论依据,而是根据实际积累的丰富经验来选择。通常来说,溶剂系统应该满足以下要求:溶剂系统不会造成样品的分解或变性样品中各组分在溶剂系统中有合适的分配系数,一般认为分配系数在0.2-5的范围内是较为合适的,并且各组分的分配系数值要有足够的差异,分离因子最好大于或等于1.5;溶剂系统不会干扰样品的检测;为了保证固定相的保留率不低于50%,溶剂系统的分层时间不超过30秒;上下两相的体积比合适,以免浪费......阅读全文
高速逆流色谱分离制备厚朴的有效成分厚朴酚与和厚朴酚
摘 要 建立了高速逆流色谱分离制备厚朴的有效成分厚朴酚与和厚朴酚的新方法,溶剂系统为石油醚2乙酸乙酯2甲醇21%醋酸(5∶5∶7∶3, V /V ) ,上相为固定相,下相为流动相。从100 mg厚朴粗提物制得和厚朴酚33. 3 mg,厚朴酚19. 5 mg,经高效液相色谱分析,纯度均大于99. 5%
高速逆流色谱分离酸枣仁中黄酮类化合物
摘要 目的: 利用高速逆流色谱法对酸枣仁黄酮类成分进行分离研究。方法: 以乙酸乙酯- 正丁醇- 水( 3B2B5)为溶剂系统,流动相的流速为110 mL# m in- 1, 主机转速为1500 r# m in- 1, 检测波长360 nm, 对酸枣仁中黄酮类化合物进行分离; 利用HPLC法测定化合物
常用氘代溶剂的残余溶剂峰在什么位置
氢谱:氘代氯仿 7.26;氘代丙酮 2.05;氘代二甲基亚砜 2.50;氘代苯 7.16;氘代乙腈 1.94;氘代甲醇 3.31;重水 4.79.碳谱:氘代氯仿 77.16;氘代丙酮 29.84 206.26 ;氘代二甲基亚砜 39.52;氘代苯 128.06;氘代乙腈 1.32 118.26;氘代
常用氘代溶剂的残余溶剂峰在什么位置
氢谱:氘代氯仿 7.26;氘代丙酮 2.05;氘代二甲基亚砜 2.50;氘代苯 7.16;氘代乙腈 1.94;氘代甲醇 3.31;重水 4.79。碳谱:氘代氯仿 77.16;氘代丙酮 29.84 206.26 ;氘代二甲基亚砜 39.52;氘代苯 128.06;氘代乙腈 1.32 118.26;氘代
什么是逆流色谱技术?
逆流色谱技术是新颖的分离技术它是不用任何固态支撑体的液液分配层析法,则能够完全排除支撑体导致的不可逆吸附和对样品的玷染、失活、变性等影响,能实现对复杂混合物中各组分的高纯度制备量分离。 逆流色谱技术CountercurrentChromatigraphy(ccc)是当今国际分离技术的一个新颖的
逆流色谱技术的简介
逆流色谱技术CountercurrentChromatigraphy(ccc)是当今国际分离技术的一个新颖的分支。它的突出特点是用很长的软管(如聚四氟乙烯管)绕制成的色谱柱内不加入任何固态支撑体或填料。使用时有使用人根据被分离混合物的理化特性.选择某一种有机/水两相溶剂体系或双水相溶剂体系,此体
逆流色谱技术的特点
1.逆流色谱不用固态支撑体,完全排除了支撑体对样品组分的吸附、玷染、变性、失活等不良影响。所以,能避免不可逆吸附所造成的溶质色谱峰拖尾现象能实现很高的回收率。例如,对于黄酮等易被填料吸附的物质的分离与制备就具有明显的优势。 2.逆流色谱的分配分离是在旋转运动中完成的,两相溶剂都被剧烈振动的离心
逆流色谱技术的前景
我国经过20余年的科研实践,已经建立了具有自主知识产权的快速分析型HSCCC、半制备型HSCCC、PH区带制备型HSCCC和大分子蛋白质分离用的CCC等系化的技术成果。应用这些技术成果,我国开发出了数10种常用中草药和茶叶等农产品中数百种单体成分的分离纯化与制备的工艺技术。这些成分包括黄酮类、生
GE医疗同田-中标长春工业大学逆流色谱项目
7月底,由GE医疗与同田生物共同推出的半制备型高速逆流色谱系统再次中标长春工业大学逆流色谱项目; 中标仪器简介: TBE-300B + AKTA PRIME 上海同田生物,作为多分离柱高速逆流色谱仪国家新型ZL的拥有者、行业领导者;通用电气医疗集团生命科学部,作为中国
残留溶剂的常用检测方法
早期用来测定药品中残留溶剂的方法是干燥失重测定法。也就是通过加热过程中,样品的质量减失来测定残留溶剂的含量。这种方法的最大缺点就是非专属性。只能对其总量分析而无法对定性鉴别,而且水分也会干扰残留溶剂的测定。分光光度法也通常利用特定溶剂和特定化学试剂的反应测定药品中的残留溶剂,虽然专属性尚可,但灵敏度
常用溶剂的化学位移
常用溶剂的化学位移常用溶剂化学位移常用溶剂化学位移环己烷1.40丙酮2.05苯7.20乙酸2.05 8.50(COOH)*氯仿7.27四氢呋喃(α)3.60(β)1.75乙腈1.95二氧六环3.551,2-二氯乙烷3.69二甲亚砜2.50水4.7N,N-二甲基甲酰胺2.77,2.95,7.5(CHO
常用溶剂的洗脱能力介绍
常用溶剂的洗脱能力溶剂溶剂强度ε0溶剂溶剂强度ε0正己烷0.00乙酸乙酯0.38异辛烷0.01二噁烷0.49四氯化碳0.11乙腈0.50四氯丙烷0.22异丙醇0.63氟仿0.26甲醇0.73二氯甲烷0.32水20.73四氢呋喃0.35醋酸20.73乙醚0.38
常用溶剂的化学位移
常用溶剂的化学位移常用溶剂化学位移常用溶剂化学位移环己烷1.40丙酮2.05苯7.20乙酸2.05 8.50(COOH)*氯仿7.27四氢呋喃(α)3.60(β)1.75乙腈1.95二氧六环3.551,2-二氯乙烷3.69二甲亚砜2.50水4.7N,N-二甲基甲酰胺2.77,2.95,7.5(CHO
上海同田中标浙江万里学院逆流色谱项目
经过激烈的供应商竞争,上海同田凭借自身在逆流色谱行业的技术优势中标浙江万里学院高速逆流色谱项目。 中标仪器简介: TBE-300B 国产配置: TBE-300B 高速逆流色谱主机+TBP-5002 柱塞恒流
罗布麻中黄酮的超声波强化提取及高速逆流色谱分离纯化
摘 要:本研究采用超声波强化提取罗布麻中总黄酮,选择乙醇浓度、超声功率、超声时间、料液比为因素进行正交试验优选出超声提取的最佳工艺条件:60% 浓度乙醇,料液比为1:15,在300W 的超声波下超声提取10min。此条件下,提取率达90% 以上。将提取后的总黄酮应用高速逆流色谱进行分离纯化,两相溶剂
高速逆流色谱法对独角莲中有效成分皂苷的分离纯化
摘 要:本文采用高速逆流色谱法对独角莲中的有效成分皂苷进行分离纯化。分别以乙酸乙酯∶正丁醇∶乙腈∶水= 5∶1∶1∶5 (V / V ) 及乙酸乙酯∶正丁醇∶乙醇∶水= 5∶10∶2∶20(V / V ) 为溶剂系统,用下相作流动相,上相作固定相,分别采用2 mL/ min及1. 5 mL/min
白花败酱草中异牡荆苷和异荭草苷的高速逆流色谱分离
摘 要 应用高速逆流色谱分离制备白花败酱草中的异荭草苷和异牡荆苷,以乙酸乙酯∶乙醇∶水(4∶1∶5)为两相溶剂系统,上相为固定相,下相为流动相,流速2. 0 mL /min,主机800 r/min,检测波长254 nm。以此分离条件经一步洗脱,从300 mg白花败酱草粗提物中制备得到异荭草苷24.
高速逆流色谱结合UNIFAC数学模型分离纯化淡竹叶中槲皮素
[摘要] 目的:建立一个经济有效的方法用于淡竹叶Lophatherum gracile 中槲皮素-3-O-葡萄糖苷的分离纯化。方法:采用高速逆流色谱( high-speed counter-current chromatography,HSCCC) 进行分离纯化,所用溶剂体系为乙酸乙酯-正丁醇-水(
高速逆流色谱从曼地亚红豆杉枝叶提取物中分离紫杉醇
摘 要:目的 研究曼地亚红豆杉枝叶提取物中分离紫杉醇及其类似物三尖杉宁碱的方法,提高紫杉醇的回收率及质量分数。方法 曼地亚红豆杉枝叶提取物先经Al2O3 柱纯化后,再以正己烷2醋酸乙酯2甲醇2乙醇2水(5 ∶7 ∶5 ∶1 ∶615) 为溶剂系统,利用循环高速逆流色谱分离紫杉醇和三尖杉宁碱。结果 经
高速逆流色谱分离与鉴定鹿药中黄酮类化合物
摘 要 采用高速逆流色谱(HSCCC)与其它色谱联用的方法分离纯化鹿药中的化学成分,得到5个黄酮类化合物: 5, 7, 3′, 4′2 四羟基232甲氧基282甲基黄酮(1) 、82甲基木犀草素(2) 、3′2 甲氧基木犀草素(3) 、木犀草素(4)和槲皮素(5) ,它们均为首次自该种及该属植物中分
高速逆流色谱法分离木香中的木香烃内酯和去氢木香内酯
摘要: 目的 应用高速逆流色谱法分离制备木香中的木香烃内酯和去氢木香内酯。方法 应用正己烷- 乙酸乙酯- 甲醇-水(2z 0. 5z 2z 1)为两相溶剂系统,主机转速为850 r·min- 1 ,流速为2. 0 ml·min- 1 ,检测波长为254 nm。结果 从100 mg木香粗提物中分离得到
让逆流色谱技术为中药现代化服务
摘 要:逆流色谱技术是一种新颖的分离技术。它是不用任何固态支撑体的液液分配层析法,则能够完全排除支撑体导致的不可逆吸附和对样品的玷染、失活、变性等影响,能实现对复杂混合物中各组分的高纯度制备量分离。本文概述了这一技术的特点、发展简史和应用情况,并就中药成分高纯度标样的制备、新药研究、高质量中间体生产
逆流色谱法的应用
主要应用于天然药用植物活性成分的分离、标准品的制备、快速分离和重要指纹图谱分析以及天然新药的研发和筛选,HSCCC技术在天然产物分离中有着非常广泛的应用 [3] 。
简述逆流色谱技术的特点
1.逆流色谱不用固态支撑体,完全排除了支撑体对样品组分的吸附、玷染、变性、失活等不良影响。所以,能避免不可逆吸附所造成的溶质色谱峰拖尾现象能实现很高的回收率。例如,对于黄酮等易被填料吸附的物质的分离与制备就具有明显的优势。 2.逆流色谱的分配分离是在旋转运动中完成的,两相溶剂都被剧烈振动的离心
逆流色谱技术的发展状况
逆流色谱的基本模型早在20世纪60年代就由Dr.YoichiroIto创立,经过数10年在美国国家健康研究院(NIH)的实验室研究,特别是在近20年,高速逆流色谱技术(High-SpeedCCC,HSCCC)的出现,使它进入了在世界范围内推广应用的阶段。每年一度的美国匹兹堡国际分析化学与应用光谱
逆流色谱法的定义
逆流色谱法法(CCC)原理是基于样品在两种互不混溶的溶剂之间的分配作用,溶质中各组分在通过两溶剂相过程中因分配系数不同而得以分离。是一种不用固态支撑体的全液体色谱方法 [1]
高速逆流色谱法分离制备大豆异黄酮中大豆苷和染料木苷
摘 要:采用高速逆流色谱法分离纯化大豆异黄酮中的大豆苦和染料木昔。溶剂系统为乙酸乙酯一醋酸一水,体积比为5:1:10,上相为固定相,下相为流动相,逆流色谱仪转速为800r/mm,流速为1.5ml/min。所得大豆昔、染料木昔经高效液相色谱分析测定,纯度分别达到98.2% 高速逆流色谱( H S
关于制备色谱的全新方法的介绍
高速逆流色谱★( high-speed countercurrent chromatography , HSCCC )是 20 世纪 80 年代发展起来的一种连续高效的液—液分配色谱分离技术, 它不用任何固态的支撑物或载体。 它利用两相溶剂体系在高速旋转的螺旋管内建立起一种特殊的单向性流体动力学
常用溶剂物理常数和精制方法
1标准溶液的配制方法及基准物质标准溶液是指已知准确浓度的溶液,它是滴定分析中进行定量计算的依据之一。不论采用何种滴定方法,都离不开标准溶液。因此,正确地配制标准溶液,确定其准确浓度,妥善地贮存标准溶液,都关系到滴定分析结果的准确性。配制标准溶液的方法一般有以下两种:1.1直接配制法用分析天平准确地称
常用洗脱溶剂和解析能力介绍
洗脱溶剂的解析能力的强弱顺序是:醋酸、水、甲醇、乙醇、丙酮、乙酸乙酯、醚、氯仿、苯、四氯化碳和己烷等。为了能得到较好的分离效果,常用两种或数种不同强度的溶剂按一定比例混合,得到合适洗脱能力的溶剂系统,以获得最佳分离效果。