Nature子刊:DNA6mA调控线粒体胁迫适应性的跨代遗传
线粒体是细胞内最重要的细胞器之一。细胞日常所需能量的90%以上都是由线粒体提供的。线粒体功能失常与人类很多重大疾病的发生发展密切相关。环境中有多种因素可能导致线粒体功能损伤,如微生物毒素、部分农药或抗生素。与此同时,细胞内产生的活性氧等也会对线粒体造成伤害。这些能够对线粒体造成损伤的因素统称为线粒体胁迫。鉴于线粒体的重要性和线粒体胁迫的广泛存在,生物是否在长期演化的过程中进化出了将线粒体胁迫信息传递给子代,从而使得子代能够更好地适应线粒体胁迫的机制呢? 2018年12月3日,北京大学分子医学研究所、北大-清华生命科学联合中心刘颖课题组在《Nature Cell Biology》在线发表题为“N6-methyldeoxyadenine is a transgenerational epigenetic signal for mitochondrial stress adaptation”的论文,报道秀丽隐杆线虫可以将亲代受到......阅读全文
组蛋白甲基化修饰研究再获突破
日前,复旦大学徐彦辉课题组在组蛋白甲基化修饰研究领域获得新进展,相关成果发布在《分子细胞》上,该项研究得到了国家自然科学基金面上项目的资助。 组蛋白甲基化修饰是一种非常重要的表观遗传修饰,参与调节异染色质形成、X染色体失活、基因印记及DNA的损伤修复等多种生命过程。关于组蛋白去甲基化酶的研究是
线粒体DNA甲基化研究进展
DNA 甲基化是表观遗传修饰的重要方式之一. 线粒体是真核细胞内的关键细胞器, 线粒体DNA(mtDNA)编码部分线粒体基因, 其 mtDNA 的甲基化修饰可能引起所编码基因的异常表达, 从而参与调节生理和病理过程. 近期来自西安交通大学生命科学与技术学院的研究人员就目前 mtDNA 甲基化及其
组蛋白修饰与DNA甲基化之间的关系
在引起基因沉默的过程中,沉默信号(DNA甲基化、组蛋白修饰、染色质重新装配)是如何进行的?谁先谁后?这是一个“鸡和蛋”的问题,目前仍处于研究阶段,还没有定论。研究发现DNA甲基化和组蛋白乙酰化是一个相互促进、加强的过程,如许多HDAC可以和DNMTl、3a、3b相互作用;而甲基化CpG结合蛋白—
Nature子刊:DNA-6mA调控线粒体胁迫适应性的跨代遗传
线粒体是细胞内最重要的细胞器之一。细胞日常所需能量的90%以上都是由线粒体提供的。线粒体功能失常与人类很多重大疾病的发生发展密切相关。环境中有多种因素可能导致线粒体功能损伤,如微生物毒素、部分农药或抗生素。与此同时,细胞内产生的活性氧等也会对线粒体造成伤害。这些能够对线粒体造成损伤的因素统称为
Nature子刊:DNA-6mA调控线粒体胁迫适应性的跨代遗传
线粒体是细胞内最重要的细胞器之一。细胞日常所需能量的90%以上都是由线粒体提供的。线粒体功能失常与人类很多重大疾病的发生发展密切相关。环境中有多种因素可能导致线粒体功能损伤,如微生物毒素、部分农药或抗生素。与此同时,细胞内产生的活性氧等也会对线粒体造成伤害。这些能够对线粒体造成损伤的因素统称为线
新研究揭示水稻组蛋白甲基化调控根系核心菌群
根系微生物组与植物的养分吸收、抗病抗逆等生长发育过程密切相关,其在植物根系的定殖和组装受环境和植物遗传途径等因素的影响。表观遗传调控是调节染色体行为和基因表达的重要机制,探究表观遗传途径与植物根系微生物的关系能够更系统地揭示植物生长发育过程。表观遗传调控与宿主微生物组的关系已在动物模型中得到研究
关于组蛋白修饰的方式—甲基化的基本信息介绍
组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。甲基化的作用
广州生物院研制出速测组蛋白甲基化试纸条
近日,中科院广州生物医药与健康院曾令文研究组,研制出一种快速灵敏检测组蛋白甲基化的试纸条。相关成果发表在《分析化学》上 近日,中科院广州生物医药与健康院曾令文研究组,研制出一种快速灵敏检测组蛋白甲基化的试纸条。相关成果发表在《分析化学》上。 据介绍,组蛋白甲基化是一种重要的表观遗
Oncogene:组蛋白去甲基化酶如何影响癌症相关的糖酵解
糖酵解途径(glycolysis)是肿瘤细胞中重要的能量来源途径,然而,目前对于这条代谢相关途径的调控方式的了解,还十分有限。来自厦门大学生命科学学院,南京大学等处的研究人员发现JMJD1A作为一个组蛋白去甲基化酶,它能够影响膀胱肿瘤细胞糖代谢途径关键酶的启动子上组蛋白甲基化修饰水平,从而影响酶
科学家揭示相关组蛋白甲基化活性的串扰调控机制
上海交通大学医学院附属第九人民医院上海精准医学研究院黄晶课题组首次揭示了染色质的核小体结构对组蛋白修饰酶MLL(Mixed Lineage Leukemia)复合物的酶活调控及其分子机制,阐明了组蛋白H2B第120位赖氨酸(H2BK120)的单泛素化修饰对MLL甲基化活性的串扰调控机制,并发
曾令文小组研制出速测组蛋白甲基化试纸条
近日,中科院广州生物医药与健康院曾令文研究组,研制出一种快速灵敏检测组蛋白甲基化的试纸条。相关成果发表在《分析化学》上。 据介绍,组蛋白甲基化是一种重要的表观遗传学修饰,通常发生在氨基末端的赖氨酸或者精氨酸上,同其他调节蛋白和DNA相互作用,参与基因的调节和染色质高级结构的形成。细胞染色质
线粒体TCA酶入核调控多能性的全新模式获揭示
近日,中国科学院广州生物医药与健康研究院研究员刘兴国团队与香港中文大学合作,研究揭示了线粒体TCA循环酶入核通过表观遗传调控多能性的重要作用,拓展了线粒体反向信号调控干细胞多能性的新模式。相关研究在线发表于《自然–通讯》。 该研究发现,多种线粒体TCA循环酶在多能干细胞获得、状态转变以及转变为
线粒体TCA酶入核调控多能性的全新模式获揭示
原文地址:http://news.sciencenet.cn/htmlnews/2022/12/491067.shtm近日,中国科学院广州生物医药与健康研究院研究员刘兴国团队与香港中文大学合作,研究揭示了线粒体TCA循环酶入核通过表观遗传调控多能性的重要作用,拓展了线粒体反向信号调控干细胞多能性的新
EMBO-Reports丨线粒体活性与细胞营养状态的关联
线粒体是细胞的能量工厂。细胞主动感受所处环境中葡萄糖的水平,进而调控线粒体的活性,维持能量代谢的稳态。然而,线粒体活性与细胞营养状态的关联机制并不清楚。 代谢物感受是复旦大学附属肿瘤医院/生物医学研究院雷群英教授领衔的肿瘤代谢研究团队的主攻方向之一。近日,该团队在EMBO Reports杂志在
我科学家发现新组蛋白去甲基化酶及其调控机理
陈德桂研究组发现新组蛋白去甲基化酶及其调控机理 继4个月前生化与细胞所陈德桂研究组与景乃禾研究组合作发表一个新的组蛋白去甲基化酶KIAA1718(KDM7A)的发现及其在胚胎干细胞神经分化过程中的功能,及两周前陈德桂研究组与基因敲除与转基因小鼠平台合作发表另一个新的组蛋白去
研究揭示拟南芥组蛋白去甲基化酶JMJ13的结构功能
3月21日,《自然-通讯》(Nature Communications)杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心杜嘉木研究组、中科院遗传与发育生物学研究所曹晓风研究组和河北师范大学孙大业研究组合作完成的题为The Arabidopsis H3
遗传发育所发现植物组蛋白去甲基化酶招募的新机制
核小体作为真核生物染色质的基本单位,由DNA缠绕组蛋白八聚体构成。组蛋白N端存在多种共价修饰,这些翻译后修饰通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及发育中起着重要的调控作用。实验室前期研究
生物物理所等在组蛋白甲基化修饰识别方面取得新进展
10月17日,《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)在线发表了生物大分子国家重点实验室许瑞明、饶子和课题组和北京生命科学研究所(NIBS)朱冰课题组合作的最新研究成果Distinct mode of
我国揭示KDM5亚家族组蛋白去甲基化酶的底物识别机制
12月12日,中国科学院植物逆境生物学研究中心杜嘉木课题组,中科院院士、中科院遗传与发育生物学研究所曹晓风课题组合作完成的论文,以Structure of the Arabidopsis JMJ14-H3K4me3 Complex Provides Insight into the Substr
线粒体基质的线粒体结构
线粒体基质 线粒体基质是线粒体中由线粒体内膜包裹的内部空间,其中含有参与三羧酸循环、脂肪酸氧化、氨基酸降解等生化反应的酶等众多蛋白质,所以较细胞质基质黏稠。苹果酸脱氢酶是线粒体基质的标志酶。线粒体基质中一般还含有线粒体自身的DNA(即线粒体DNA)、RNA和核糖体(即线粒体核糖体)。 线粒体
Nat-Commun-|-中山大学李斌奎等团队合作研究克服HCC的免疫治疗耐药
免疫检查点阻断(ICB)已成为肝细胞癌(HCC)的一种有希望的治疗选择,但对ICB的耐药性和患者的反应各不相同。2024年9月10日,中山大学李斌奎,美国德州大学Wang Guocan,中山大学元云飞共同通讯在Nature Communications 在线发表题为“Targeting PRMT3
线粒体胁迫适应性跨代遗传研究获突破
北京大学刘颖课题组在线粒体胁迫适应性的跨代遗传及其表观遗传调控机制研究方面取得了重要进展,相关研究成果于12月4日在线发表于《自然-细胞生物学》。 刘颖告诉《中国科学报》,这是国际上第一项证明动物存在线粒体胁迫适应性跨代遗传现象的研究,也加深了对跨代遗传调控机制的理解。该研究为人类线粒体疾病的
揭秘神经发育过程中m6ARNA甲基化与组蛋白修饰间的关系1
文章导读表观转录组学的研究在生物发育和疾病相关性等方面正越来越引起人们的关注。其中m6A修饰的研究是表观转录组学研究的一大热点。研究表明,m6A标签在mRNA和lncRNA中超过10,000种,并且m6A参与mRNA的转录后修饰也成为基因表达中的一种重要的调控机制。m6A的在基因表达调控方面功能作用
揭秘神经发育过程中m6ARNA甲基化与组蛋白修饰间的关系2
(3)Mettl14缺失导致晚期出生神经元数量减少在P0小鼠中,作者通过特定标记识别相应的神经元亚型,在六个不同的皮层中发现了RGCs分化的神经元。其中,Cux1在晚期出生的神经元中表达,是II-IV的标记物,对标记信号进行定量结果表明相比于CK小鼠而言Mettl14-cKO小鼠中Cux1+的信号值
生化与细胞所揭示组蛋白H3K4甲基化抑制转录的新机制
真核生物染色质的组蛋白末端会发生多种的化学修饰(包括乙酰化和甲基化修饰等),这是真核生物细胞随环境变化而改变基因表达谱式的重要调控方式。之前的研究发现,组蛋白H3K4甲基化分布于基因的启动子区,对基因转录主要起正调控作用。然而,有研究表明H3K4甲基化对某些基因表达起到抑制作用,其
比较组蛋白与非组蛋白的特点及其作用
组蛋白:特点:进化上的极端保守性;无组织特异性;肽链上氨基酸分布的不对称性;组蛋白的修饰作用。作用:1,核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构2,H1组蛋白,在构成核小体时期连接作用,赋予染色体极性3,对染色体DNA的包装起着重要作用非组蛋白:特点:非组蛋白是一类酸性蛋白质,富含天冬氨酸和
比较组蛋白与非组蛋白的特点及其作用
组蛋白:特点:进化上的极端保守性;无组织特异性;肽链上氨基酸分布的不对称性;组蛋白的修饰作用。作用:1,核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构2,H1组蛋白,在构成核小体时期连接作用,赋予染色体极性3,对染色体DNA的包装起着重要作用非组蛋白:特点:非组蛋白是一类酸性蛋白质,富含天冬氨酸和
表观遗传之组蛋白修饰—组蛋白乙酰化
大家好,我又来啦~~今天给大家放送的是表观遗传之组蛋白修饰相关的内容噢,组蛋白修饰也是一个比较复杂的过程,今天呢,我们就给大家讲讲组蛋白乙酰化及相关的产品。 一 组蛋白修饰 真核生物染色质的基本结构单位是核小体,它由约 146 bp DNA 缠绕组蛋白八聚体组成,其中组蛋白八聚体包含 2 (H2
外源基因在真核细胞中的表达系统
1. 真核生物表达的优越性和必要性① 真核生物具有转录后加工系统,可识别并删除基因中的内含子,剪切加工为成熟mRNA.②具备完善的翻译后加工系统,可进行糖基化、乙酰化等修饰,使蛋白形成正确的天然构型,因而真核生物表达系统产生的蛋白更接近天然状态,有利于其功能、生物活性的研究。③某些真核细胞可将基因表
遗传发育所植物组蛋白H3K27me3去甲基化酶研究获进展
PcG介导的组蛋白H3第27位赖氨酸上三甲基化(H3K27me3)在基因沉默和发育调控中起着至关重要的作用。小鼠胚胎干细胞中超过10%的基因受该种修饰调控,拟南芥中超过7,000个基因受该修饰调控。拟南芥中H3K27me3主要由CLF和SWN两个甲基转移酶催化,并招募LHP1结合以有效抑制基因表