陈建军/杨建华/何川/黄刚揭示RNAm6A由组蛋白修饰决定
近年来,RNA表观遗传学的研究发现RNA甲基化修饰,特别是m6A甲基化修饰,在哺乳动物的转录组中广泛存在,并且在多种生理和病理过程中发挥着重要的生物学功能,引领了RNA以及表观遗传学领域的又一个热潮。高通量测序揭示在人和小鼠的转录组中有1/3-1/2的mRNA转录本具有m6A修饰【1,2】。理论上每一个m6A的保守元件RRACH(R代表G或A,H代表A,C或U)都可以被m6A的甲基转移酶复合物(MTC,m6A methyltransferase complex,由METTL3和METTL14两个核心组分形成的二聚体, 加上WTAP作为该二聚体的co-factor)识别,并对其中的A进行甲基化修饰,但是在体内并不是每一处RRACH都具有甲基化修饰。 究竟是什么样的机制选择决定了体内特异位点的m6A甲基化修饰?为什么m6A甲基化修饰更倾向于发生在mRNA的CDS和3’UTR,特别是聚集在终止密码子附近? 另外,虽然有些证据提......阅读全文
陈建军/杨建华/何川/黄刚-揭示RNA-m6A由组蛋白修饰决定
近年来,RNA表观遗传学的研究发现RNA甲基化修饰,特别是m6A甲基化修饰,在哺乳动物的转录组中广泛存在,并且在多种生理和病理过程中发挥着重要的生物学功能,引领了RNA以及表观遗传学领域的又一个热潮。高通量测序揭示在人和小鼠的转录组中有1/3-1/2的mRNA转录本具有m6A修饰【1,2】。理论
揭示RNA-m6A修饰调控抗肿瘤免疫机制
免疫治疗是对抗肿瘤的前沿阵地,其治疗成功的关键是引发针对肿瘤抗原的自发性T细胞反应。许多病人的免疫系统无法有效识别肿瘤抗原,难以引发持续性的T细胞应答并清除肿瘤。研究免疫系统识别肿瘤抗原的分子机制有望发现新型药物靶点,提高免疫治疗效果。 中国科学院北京基因组研究所韩大力团队与清华大学徐萌团队、
揭示了m6A-RNA修饰的新的进化意义
无义介导的RNA降解(Nonsense-mediated decay, NMD)是真核生物一种重要的mRNA质量控制方式,细胞通过检验终止密码子与最后一个剪接接头的距离是否超过55nt来判断该终止密码子是否为提前终止密码子(Premature Termination Codon, PTC)从而决
RNA-m6A甲基化修饰研究相关研究的应用
如果新冠病毒SARS-CoV-2的大流行对我们有任何启发的话,那么要数对RNA修饰的研究了,此时研究病毒RNA以及其甲基化修饰等功能,显得比以往任何时候都更加重要。 而这是否意味着要研究病毒RNA本身不同的各种突变体或者表观遗传变化如何使这些病毒更灵活和感染力?还是研究从细胞和组织中收集的R
中山大学杨建华团队发1篇Nature,揭示m6A详细调控机制
2019年3月13日,美国希望之城贝克曼研究所陈建军,芝加哥大学何川,中山大学杨建华及辛辛那提儿童医院黄刚共同通讯在Nature在线发表题为“Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcr
RNA甲基化(m6A)研究:最前沿表观遗传研究热点(一)
随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和DNA甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布Nature, Cell和Science等期刊杂志。在分子生物学的中心法则中,遗传信息从DNA、RNA流向蛋白。基因组DNA和组蛋白上都存在可逆的表观遗传学修饰,这
Nature遗传学综述:何川教授详解RNA甲基化
在分子生物学的中心法则中,遗传信息从DNA、RNA流向蛋白。基因组DNA和组蛋白上都存在可逆的表观遗传学修饰,这些修饰可调控基因的表达,并由此决定细胞的状态,影响细胞的分化和发育。近年来人们发现, mRNA和其他RNA上也存在类似的调控机制。 RNA在生物学系统中有着举足轻重的作用,它
表观遗传研究热点:RNA-甲基化(m6A)研究
随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和 DNA 甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布 Nature, Cell 和 Science 等期刊杂志。在分子生物学的中心法则中,遗传信息从 DNA、RNA 流向蛋白。基因组 DNA 和组蛋白上都存在可逆的表观遗
表观遗传研究热点:RNA-甲基化(m6A)研究
随着表观遗传学研究的不断深入,组蛋白修饰(甲基化,乙酰化,磷酸化…)和 DNA 甲基化修饰相关的高水平研究成果如雨后春笋般涌现,遍布 Nature, Cell 和 Science 等期刊杂志。在分子生物学的中心法则中,遗传信息从 DNA、RNA 流向蛋白。基因组 DNA 和组蛋白上都存
组蛋白修饰的意义
通过影响组蛋白与DNA双链的亲和性,从而改变染色质的疏松或凝集状态,或通过转录因子与结构基因启动子的亲和性来发挥基因调控作用。这些修饰之间存在协同和级联效应,更为灵活地影响染色质的结构与功能,通过多种修饰方式的组合发挥其调控功能。
全套病毒RNA-m6A甲基化修饰研究工具的使用(三)
随后, 需要检测m6A甲基化酶和脱甲基酶活性 如果您打算研究RNA甲基化酶或去甲基化酶的活性/抑制作用,我们建议您使用上述提到的功能强大的核提取试剂盒(OP-0002),该试剂盒可以快速提取核蛋白,同时可确保提取后的酶活性保持完整。 收集了核提取物后,进行甲
全套病毒RNA-m6A甲基化修饰研究工具的使用(一)
如果新冠病毒SARS-CoV-2的大流行对我们有任何启发的话,那么要数对RNA修饰的研究了,此时研究病毒RNA以及其甲基化修饰等功能,显得比以往任何时候都更加重要。 而这是否意味着要研究病毒RNA本身不同的各种突变体或者表观遗传变化如何使这些病毒更灵活和感染力?还是研究从细胞和
上海生科院发现RNA-m6A修饰和果蝇性别决定新因子
3月19日,中国科学院上海生命科学研究院分子植物科学卓越创新中心/植物生理生态研究所严冬研究组,与美国哈佛大学Norbert Perrimon研究组合作,以Xio is a component of the Drosophila sex determination pathway and RNA
全套病毒RNA-m6A甲基化修饰研究工具的使用(二)
那么,病毒RNA修饰的研究工作流程有哪些呢? 首先,提取病毒RNA 无论您是从细胞,组织还是病毒等样品开始实验,高效而快速的RNA提取通常都是成功进行实验的第一步。工作流程的这一部分至关重要,因为足够的纯度和产量都是确保下游应用程序平稳准确运行的基本要求。
m6A修饰新功能——调控染色质状态和转录活性
m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。2020年1月17日,美国芝加哥大学何川,中科院北京基因组研究所韩大力和同济
揭秘m6A修饰新功能----调控染色质状态和转录活性
m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。 2020年1月17日,美国芝加哥大学何川,中科院北京基因组研究所
揭秘m6A修饰新功能----调控染色质状态和转录活性
文章导读 m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。 2020年1月17日,美国芝加哥大学何川,中科院
RNA加工修饰
中文名RNA加工修饰所属领域生物学定义RNA加工修饰,主要加工方式是切断和碱基修饰,真核生物tRNA前体一般无生物学特性,需要进行加工修饰。
揭秘神经发育过程中m6ARNA甲基化与组蛋白修饰间的关系2
(3)Mettl14缺失导致晚期出生神经元数量减少在P0小鼠中,作者通过特定标记识别相应的神经元亚型,在六个不同的皮层中发现了RGCs分化的神经元。其中,Cux1在晚期出生的神经元中表达,是II-IV的标记物,对标记信号进行定量结果表明相比于CK小鼠而言Mettl14-cKO小鼠中Cux1+的信号值
脂肪含量和肥胖相关蛋白在哺乳动物发育中的功能底物
N6-甲基腺嘌呤(m6A)是真核生物mRNA内部最常见、最丰富的修饰,受多种蛋白的调控。其中,脂肪含量和肥胖相关蛋白(FTO)作为首个被鉴定的RNA去甲基化酶,可以擦除mRNA内部的m6A,但FTO在哺乳动物发育中的主要功能底物仍不清楚。近日,美国芝加哥大学和同济大学合作在《Science》杂志
中国学者发表RNA甲基化重要成果
基因组DNA和组蛋白上存在可逆的表观遗传学修饰,这些修饰可以调控基因的表达,由此决定细胞的状态,影响细胞的分化和发育。近年来人们发现,mRNA和其他RNA也存在类似的表观遗传学调控,比如m6A(N6-methyladenosine)。 西北农林科技大学、中科院上海植物逆境生物学研究中心和美国普
中国学者发表RNA甲基化重要成果
基因组DNA和组蛋白上存在可逆的表观遗传学修饰,这些修饰可以调控基因的表达,由此决定细胞的状态,影响细胞的分化和发育。近年来人们发现,mRNA和其他RNA也存在类似的表观遗传学调控,比如m6A(N6-methyladenosine)。 西北农林科技大学、中科院上海植物逆境生物学研究中心和美国普
表观遗传之组蛋白修饰—组蛋白乙酰化
大家好,我又来啦~~今天给大家放送的是表观遗传之组蛋白修饰相关的内容噢,组蛋白修饰也是一个比较复杂的过程,今天呢,我们就给大家讲讲组蛋白乙酰化及相关的产品。 一 组蛋白修饰 真核生物染色质的基本结构单位是核小体,它由约 146 bp DNA 缠绕组蛋白八聚体组成,其中组蛋白八聚体包含 2 (H2
北京基因组所合作揭示RNA-m6A修饰调控抗肿瘤免疫机制
免疫治疗是对抗肿瘤的前沿阵地,其治疗成功的关键是引发针对肿瘤抗原的自发性T细胞反应。许多病人的免疫系统无法有效识别肿瘤抗原,难以引发持续性的T细胞应答并清除肿瘤。研究免疫系统识别肿瘤抗原的分子机制有望发现新型药物靶点,提高免疫治疗效果。 中国科学院北京基因组研究所韩大力团队与清华大学徐萌团队、
《科学》发表同济大学高亚威团队联合研究成果
摘要:1月17日,同济大学生命科学与技术学院、附属东方医院高亚威教授联合美国芝加哥大学教授何川、中科院北京基因组研究所研究员韩大力合作完成的研究成果“N6-methyladenosine of chromosome-associated regulatory RNA regulates chro
一文了解RNA甲基化机制
1. 什么是RNA甲基化修饰? 我们知道DNA的甲基化修饰是发生在胞嘧啶(C)上的,而最常见的RNA的甲基化修饰是m6A(N6-methyladenosine,6-甲基腺嘌呤)和尿苷化修饰(uridylation,U-tail)。 m6A修饰在70年代就发现了,是可以发生在mRNA、lncR
综述:化学干预靶向致癌m6A修饰蛋白
RNA表观遗传学为基因表达调控提供了一个新的切入点,以RNA m6A甲基化修饰为代表开辟了RNA表观遗传的研究新方向。首个m6A去甲基化酶FTO的发现证实了m6A修饰的动态可逆性,成为推动m6A领域发展的标志性事件。m6A修饰影响着RNA代谢的每个环节,在众多生理病理过程中有着关键作用,包括癌症
北京基因组所杨运桂研究员到昆明动物所进行学术交流
1月14日上午,应中国科学院、云南省动物模型和人类疾病机理重点实验室陈策实研究员邀请,中国科学院北京基因组研究所杨运桂研究员到昆明动物研究所进行学术交流,并作了题为N6-methyl-adenosine (m6A) in RNA: An Old Modification with A Nov
简述组蛋白修饰的基本作用
组蛋白修饰的基本作用:Mi22NHRD 由核心(HDAC1、HDAC2、RBA P46ö;RBA P48) + M i2、M TA 1ö;M TA 2、MBD3 组成,其中MBD3 含有MBD 样序列,与甲基化DNA 有低亲和力,分析发现MBD3 与甲基化有关的氨基酸被置换,由此
关于组蛋白修饰的形式介绍
在哺乳动物基因组中,组蛋白则可以有很多修饰形式.。一个核小体由两个H2A,两个H2B,两个H3,两个H4组成的八聚体和147bp缠绕在外面的DNA组成. 组成核小体的组蛋白的核心部分状态大致是均一的,游离在外的N-端则可以受到各种各样的修饰,包括组蛋白末端的乙酰化,甲基化,磷酸化,泛素化,ADP