植物介导地上地下互作研究取得进展

从土壤颗粒到植物叶片,从动物牙齿到肠道表皮,地球上几乎每一个表面都有微生物的存在。这些微生物在诸如养分物质循环、动植物健康、生态多样性等方面起到至关重要的作用。早期的研究发现,植物作为媒介可以像“电话”一样为地上和地下生物传递信息。然而,地上地下微生物组是否也能通过植物进行传递尚不清楚。在近期完成的研究中,一个由中国科学院遗传与发育生物学研究所农业资源研究中心研究员朱峰和荷兰皇家生态学研究所的四位生态学家组成的联合研究团队发现,地上昆虫可以从地面上有选择性地获取微生物组,无需植物干预。 研究人员首先发现,当只被允许取食植物叶片时,昆虫体内微生物群落结构非常简单。然而,当为昆虫提供整株盆栽植物取食时,昆虫体内微生物与土壤微生物群落结构惊人地相似,重叠率高达75%。这也推翻了该研究最初的假设,即植物微生物组与植食昆虫体内微生物组是最为相关的。 进一步的研究发现,通过田间种植不同功能类型、生长速率的植物群落对土壤进行驯化,导致......阅读全文

农杆菌介导的植物遗传转化

农杆菌介导的植物  遗传转化   【目的】:学习和掌握共培养过程关键技术环节及转基因植株的筛选。   【要求】:以烟草叶片为材料,与对数生长期的带有外源基因的农杆菌共培养,遗传转化烟草叶片,筛选抗性再生植株。   【内容】:1、烟草无菌苗的准备   2、带有外源基因农杆菌的培养   3、烟草叶片与对

农杆菌介导的植物遗传转化

农杆菌介导的植物遗传转化   【目的】:学习和掌握共培养过程关键技术环节及转基因植株的筛选。   【要求】:以烟草叶片为材料,与对数生长期的带有外源基因的农杆菌共培养,遗传转化烟草叶片,筛选抗性再生植株。   【内容】:1、烟草无菌苗的准备  2、带有外源基因农杆菌的培养  

农杆菌介导的植物遗传转化

实验概要以烟草叶片为材料,与对数生长期的带有外源基因的农杆菌共培养,遗传转化烟草叶片,筛选抗性再生植株。掌握共培养过程关键技术环节及转基因植株的筛选。主要试剂70%乙醇0.1% HgCl2无菌水卡那霉素(kan)羧苄青霉素(Cb)培养基:LB培养基100ml;MS 盐溶液(pH 7.0)100ml,

简述转基因植物的农杆菌介导法

  农杆菌的Ti质粒可以作为载体。Ti质粒上有两个区域,一个是T-DNA区,这是能够转移并整合进植物受体的区段;另一个是Vir区,它编码实现质粒转移所需的蛋白质。将待转化的外源基因先克隆在大肠杆菌质粒上,然后将此质粒转入不会引起冠瘿瘤的农杆菌(这种菌的Ti质粒已除去了T-DNA),使外源基因通过同源

植物介导地上地下互作研究取得进展

  从土壤颗粒到植物叶片,从动物牙齿到肠道表皮,地球上几乎每一个表面都有微生物的存在。这些微生物在诸如养分物质循环、动植物健康、生态多样性等方面起到至关重要的作用。早期的研究发现,植物作为媒介可以像“电话”一样为地上和地下生物传递信息。然而,地上地下微生物组是否也能通过植物进行传递尚不清楚。在近期完

植物介导地上地下互作研究取得进展

  从土壤颗粒到植物叶片,从动物牙齿到肠道表皮,地球上几乎每一个表面都有微生物的存在。这些微生物在诸如养分物质循环、动植物健康、生态多样性等方面起到至关重要的作用。早期的研究发现,植物作为媒介可以像“电话”一样为地上和地下生物传递信息。然而,地上地下微生物组是否也能通过植物进行传递尚不清楚。在近期完

武汉植物园在ABA介导的植物抗旱机理研究中取得进展

  水分胁迫是植物生长发育过程中不可避免的不利因素,也是农业生产减产的重要因素。植物由于自身限制,当遭受逆境环境时无法逃避,只能选择应答外界胁迫,因此植物演化出一套复杂而精密的调控机制,来感应外部胁迫并传递信号,最终在分子、细胞和整个植株水平上形成精确反应。这种逆境胁迫首先被植物细胞膜上的感应器所感

植物所发现蛋白构象改变介导开花新机制

  开花是高等植物进入生殖发育的重要标志,受关键基因以及组蛋白修饰的精确调控,甾醇类激素(BRs)和赤霉素(GAs)参与其中,但激素信号分子与蛋白质构象的瞬时改变如何联动调控开花尚不清楚。   中科院植物研究所种康研究组及其合作者发现,BRs信号途径中核心转录因子BZR1通过直接抑制组蛋白去甲基化

植物所发现VPS28调控生长素介导的植物生长发育

  内吞体分选转运复合体(ESCRT)在真核生物中高度保守,在泛素化质膜蛋白的胞内降解过程中发挥重要作用。ESCRT复合体主要参与多泡体形成、胞质分裂和病毒出芽过程。该复合体含有多个组分,在动物中研究较多,而在植物中一些组分的功能尚不清楚。  中国科学院植物研究所程佑发研究组通过遗传筛选,获得胚胎和

植物原位接种介导的小麦高效农杆菌转化方法实验

试剂、试剂盒:缓释肥                                                                  乙酰丁香酮  仪器、耗材:盆钵                                                          

植物原位接种介导的小麦高效农杆菌转化方法实验

试剂、试剂盒缓释肥乙酰丁香酮仪器、耗材盆钵植物支撑器LB 培养基通用型试管YEP 固体培养基TSIM 培养基实验步骤一、材料1. 母体植株的生长( 1 ) 将母体植株种植于 12 , 7F ( 直径为 13 cm) 的盆钵中,每盆 4 株。( 2 ) 用 Levingtons  M2 培养土,并施用

根癌农杆菌介导的植物转化-叶盘转化法

一、原理以根癌农杆菌介导的遗传转化是目前最有效的途径之一。根癌农杆菌对植物释放的化学物质产生趋化反应,向植物受伤组织集中。经共培养后,受伤部位的化学诱导物透过农杆菌的细胞膜使Ti质粒上的Vir基因活化。Vir基因产物使Ti质粒上的T-DNA进入植物细胞,并整合到植物核基因组中。插入在T-DNA左右边

武汉植物园在传粉者介导下植物的相互作用研究中取得进展

  自然界中大多数开花植物的传粉过程都不是孤立完成的,而是与环境中共同开花植物一起进行。区域内花期彼此交叠的植物共同供养传粉者并共同分享传粉者服务,这种传粉者介导的植物与植物之间的相互作用是当今植物生殖生态学研究的热点和前沿领域。   生境破碎化是当前生物生长与繁殖面临的重大挑战,一般认为在破碎化

植物原位接种介导的小麦高效农杆菌转化方法实验(二)

5. 转基因幼苗的生长需要用到以下材料:( 1 ) Jiffy 7 泥炭颗粒(Jiffy 产品, Norway)( 2 ) 播种托盘及相应的 24 孔穴盘(可任选供应商)( 3 ) 适合播种盘大小的培养箱(可任选供应商)6. 转基因植株的生长需要用到以下材料:( 1 ) 12F(直径 12 cm)盆

遗传发育所揭示脱落酸介导植物开花的分子机理

  植物的开花时间是农业生产上一个重要农艺性状,适宜的开花时间有利于作物灌浆成熟,保证产量和质量,具有重要的经济学意义;同时,开花时间调控本身极为复杂,也是植物学基础研究领域一个热点。大量研究表明,开花时间受到包括赤霉素(GA)途径在内的四大途径协同调控。脱落酸(ABA)与GA是一对经典的植物激素,

植物原位接种介导的小麦高效农杆菌转化方法实验(一)

试剂、试剂盒 缓释肥乙酰丁香酮仪器、耗材 盆钵植物支撑器LB 培养基通用型试管YEP 固体培养基TSIM 培养基实验步骤 一、材料1. 母体植株的生长( 1 ) 将母体植株种植于 12 , 7F ( 直径为 13 cm) 的盆钵中,每盆 4 株。( 2 ) 用 Levingtons  M2 培养土,

不同粒径团聚体介导土壤与植物关联关系研究中取得进展

  不同粒径团聚体可为土壤微生物提供异质性生境,进而成为驱动土壤物质和能量循环与转化的等级性单元,最终对养分供储关键过程产生差异性影响。土壤团聚体在固碳、保肥和防侵蚀等生态系统服务方面的重要作用已得到系统性研究,然而,其在介导土壤性质与植物群落关联关系方面的作用较少被关注。  中国科学院沈阳应用生态

染色质状态介导的植物“冬季低温记忆”母系遗传机制查明

  中科院分子植物科学卓越创新中心上海植物逆境生物学研究中心何跃辉研究组的一项研究揭示了长期低温(寒冬)诱导的“春化”状态(或“冬季低温记忆”)通过卵细胞传递给合子和早期胚胎的母系遗传机制。相关研究论文近日发表于《自然—植物》。染色质状态介导的植物“冬季低温记忆”母系遗传机制  有些植物可以记住过去

版纳植物园揭示BRs与ABA介导种子萌发的分子机理

  植物种子萌发和萌发后发育(Seed germination and postgerminative growth)受到植物体内多种信号分子和外界环境因子所调控。例如,植物激素脱落酸(Abscisic acid,ABA)抑制植物种子萌发和萌发后发育,而油菜素内酯(Brassinosteroids,

版纳植物园发表固体酸介导的低温生物质水解研究综述

固体酸介导的低温生物质水解过程  木质纤维素基生物质中碳水化合物的含量约为75%,这些碳水化合物可以经过酸直接水解或酸—纤维素酶两步法水解为可发酵糖,从而能够为大宗化工产品如生物燃料(生物柴油、生物丁醇和沼气等)和化学品(如乙酸、苹果酸、丙酮和乳酸等)的生产提供丰富廉价的原

微生物所受体类激酶介导植物先天免疫研究获系列进展

  植物对病菌的识别主要存在于两个层面,对病菌表面保守的分子特征物质(PAMP)的识别(PTI,PAMPs triggered immunity)和对致病因子(effector)的识别(ETI,Effector triggered immunity)。这两个层面上的识别都可以激活下游的抗病基因,而这

补体介导的细胞毒实验——补体介导法

细胞毒实验可应用于:(1)检查细胞膜抗原;(2)鉴定抗体的特异性。实验方法原理带有特异抗原的靶细胞(如正常细胞、肿瘤细胞、病毒感染细胞)与相应抗体结合后,在补体的参与下,引起靶细胞膜损伤,导致细胞膜的通透性增加、细胞死亡。染料(例如:伊红-Y、台盼蓝)可通过细胞膜进入细胞内使细胞着色,故可用于指示死

我国学者首次发现了被子植物中水介导的受精机制

  在最早期的植物类群绿藻中,受精过程是在水中实现的。苔藓植物和蕨类植物虽然登上了陆地,但是受精过程依然离不开水。水介导的受精系统因此也被认为是早期陆生植物特有的受精系统,但这种受精系统在演化过程中限制了植物的扩张,对于其陆生生境是不适应的。相比之下,种子植物不再直接传递精子,而是演化出利用动物和风

上海生科院发现小分子RNA靶基因介导植物抗热途径新机制

  4月11日,中国科学院上海生命科学研究院植物生理生态研究所何玉科研究组在Plant Cell 杂志上在线发表题为HEAT-INDUCED TAS1 TARGET1 Mediates Thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR

动物所揭示组织定居记忆性T细胞可介导器官移植物排斥

  临床器官移植是器官损伤终末期患者的有效治疗手段。受者免疫系统对心脏、肾脏等器官移植物的免疫排斥仍是临床面临的科学问题和限制移植物长期存活的障碍。当前研究对长期定居在非淋巴组织或其它器官中的识别同种异体抗原的记忆性T细胞(TRM)是否参与同种异基因移植物的排斥及其移植免疫排斥的特点等问题尚不清楚。

我国学者揭示RAFs和SnRK2s介导植物渗透胁迫早期应答过程

  1月30日,国际学术期刊《自然-通讯》(Nature Communications)在线发表中国科学院分子植物科学卓越创新中心上海植物逆境生物学研究中心王鹏程和朱健康研究组合作的研究论文“A RAF-SnRK2 kinase cascade mediates early osmotic stre

病毒介导基因转移

病毒介导基因转移:前述的化学和物理方法都是通过传染方式基因转移。病毒介导基因转移(viral mediatedgene transfer)是通过转换方式完成基因转移,即以病毒为载体(vector),将外源目的基因通过基因重组技术,将其组装于病毒上,让这种重组病毒去感染受体宿主细胞,这种病毒称为病毒运

脂质体介导的真核细胞转染实验——质体介导短暂表达

用脂质体将DNA导人各种真核细胞的效率比其他转染方法更高,重复性更好。实验材料哺乳动物细胞试剂、试剂盒质粒DNA完全培养基氯化铯DMEM仪器、耗材培养皿培养箱聚苯乙烯管实验步骤1.  按5×105细胞/孔的量在六孔板中接种指数期生长的细胞,在37℃ 5%CO2培养箱中 培养过夜,直至细胞80%汇片。

新发现:硝酸盐转运蛋白介导植物体内铁的再分配

  铁(Fe)是植物和其他生物体生长必需的元素,尽管土壤中含量丰富,大部分铁以不溶性还原型铁(Fe3+)的形式存在,难以被植物吸收。因此植物往往通过分泌H+或者小分子化合物的方式还原或者螯合铁,使之更容易被植物吸收利用。硝酸盐的吸收会造成土壤碱化从而影响Fe的吸收,导致植物出现缺铁性褪绿症状。因此研

版纳植物园揭示OsIAA4参与生长素介导的水稻株型建成

  水稻是我国最重要的粮食作物之一,我国人口在未来20年仍将继续增长,对粮食的需求将持续增加,但耕地面积却在不断减少,因此提高主要农作物单产是实现粮食总产量增长的根本途径。按照作物产量性状遗传改良的实践,通过改良株型,提高品种的田间种植密度,进而促进光能利用率,可以增加作物产量。株型发育是当前及未来