前沿显微成像技术专题之:光片荧光显微镜(二)
上一篇简单介绍了光片荧光显微镜的一些基本知识,光片显微镜的诞生大大拓展了生命科学的研究视野,但它也有一些需要克服的天生缺陷和技术难点。本期就让我们从这里开始,一步步追寻光片显微镜的发展足迹。静态光片和技术难点正如我们在上一期提到的那样,传统的光片是由高斯光束通过一个柱形透镜来实现的。 最初,只用一个照明物镜和一个成像物镜(图1),称为L-SPIM。这种光片最大的问题是照明不均匀,光强会沿着传播方向逐渐减弱。为了解决这个问题,有效视野只能选择相对均匀的照明范围,因此样品必须做至少四次90°旋转 (图1),成像速度很慢,而且还要再使用复杂的算法进行后处理,很容易产生伪迹。图1 L-SPIM:需要旋转至少四次才能完整成像为了解决这个问题,科学家们做出了改进,使用两个相对的物镜进行双边照明,称为T-SPIM(图2)。T-SPIM扩大了有效视野,增加了成像速度。但深部的样品信号由于色散和散射特性,成像效果还是比较差。为了保证图像质量,仍需......阅读全文
前沿显微成像技术专题之:光片荧光显微镜(二)
上一篇简单介绍了光片荧光显微镜的一些基本知识,光片显微镜的诞生大大拓展了生命科学的研究视野,但它也有一些需要克服的天生缺陷和技术难点。本期就让我们从这里开始,一步步追寻光片显微镜的发展足迹。静态光片和技术难点正如我们在上一期提到的那样,传统的光片是由高斯光束通过一个柱形透镜来实现的。 最初,只用一个
前沿显微成像技术专题之:光片荧光显微镜(一)
在过去二十多年中,光学显微成像技术发展迅速,不断突破传统极限。生命科学研究,要求成像系统在不影响生物活性的前提下,实现更大视野,更高分辨率,更高速度的三维成像。这也意味着对成像探测器 - 科研相机的要求也越来越高。从本周开始,我们将为大家带来前沿显微成像技术专题系列,和大家一起探讨前沿的显微成像技术
前沿显微成像技术专题之:光片荧光显微镜(三)
关于光片显微镜,通过前面第一,第二期的介绍,相信大家已经有了较为全面的了解。在本期中,我们将介绍另外几种光片显微技术,它们和第二期最后介绍的晶格光片显微镜一样,都是对传统光片显微技术的改进,以满足更高的成像要求。最后,我们将为大家总结如何挑选适合光片显微镜的科学相机。倒置平面照明显微镜 (d)iSP
前沿显微成像技术专题——超分辨显微成像(1)
从16世纪末开始,科学家们就一直使用光学显微镜探索复杂的微观生物世界。然而,传统的光学显微由于光学衍射极限的限制,横向分辨率止步于 200 nm左右,轴向分辨率止步于500 nm,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然随着扫描电镜、扫描隧道显微镜及
前沿显微成像技术专题——超分辨显微成像(2)
上一期我们为大家介绍了几种主要的单分子定位超分辨显微成像技术,还留下了一些问题,比如它的分辨率是由什么决定的?获得的大量图像数据如何进行重构?本期我们就来为大家解答这些问题。单分子定位超分辨显微成像的分辨率单分子定位超分辨显微成像的分辨率主要由两个因素决定:定位精度和分子密度。定位精度是目标分子在横
前沿显微成像技术专题——转盘式共聚焦显微镜(1)
传统的荧光显微技术在生物成像领域有两个难以克服的挑战:一是对生物样品的结构做3D成像。在传统宽场荧光显微镜中,照明光会照亮光路上的整个样品,来自非焦平面的杂散光信号也会被成像物镜收集到(图1),干扰所要观察的样品信号,不但降低横向分辨率,轴向分辨率也只能达到2.5µm左右,比大多数生物结构都要大,因
前沿显微成像技术专题-——-转盘式共聚焦显微镜(2)
上一篇文章介绍了转盘式共聚焦显微镜的基本原理和技术特点,本篇主要介绍一些不同的转盘共聚焦系统。常见转盘共聚焦系统目前市场上最常见的是由日本Yokogawa(横河电机)公司生产的 CSU系列转盘系统,主流转盘共聚焦显微镜多使用的是这一系列。正如在前文中提到的,它由两个同轴排列的针孔圆盘组成,中间装有一
光片成像模块升级共聚焦显微镜:成像更快速光毒性更低
对生物样品进行快速可靠的原位成像以揭示与复杂的多细胞生物相关的动态过程一直都是光学成像的一大目标。传统的激光共聚焦显微镜虽然具有优异的3D荧光成像功能,提供了非常高的空间分辨率,但是在某些实验中,成像速度不够快和光漂白问题依然不容忽视。光片技术的提出就很好地解决了这些问题,同时还保有优异的空间分辨率
免疫荧光技术之荧光显微镜检查方法
1、荧光显微镜荧光显微镜是免疫荧光组织化学的基本工具,分透谢和落射二种类型,落射光无需镜内操作,方便、效果更好。它是由超高压光源、滤板系统(包括激发和压制滤板)和光学系统等主要部件组成。是利用一定波长的光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。 本文来自检验地带网2、荧光显微镜
材料检测技术专题论坛-关注前沿新技术
第十三届中国国际科学仪器及实验室装备展览会(CISILE)于4月23日至25日在北京国家会议中心召开。本届CISILE展会 秉承一贯的优良传统,除了大规模展商展出之外,展览会同期还举办了科学仪器及实验室技术高峰论坛。 4月24日,在材料检测技术专题论 坛上,各位报告人为
荧光显微镜:内置了照明和滤光片用于成像
荧光显微镜的基础荧光显微镜非常适用于测量和分析各种光波长的吸收和激发。内置荧光显微镜设置利用平板分光器将照明器的光源转折平行光学路径。从机械的角度来说,此设置的复杂程度低于其他数字视频显微镜系统,其设置就如图1所示。与大多数光学系统一样,此系统同样具备了传感器、光学组件以及受检测物体。基于本次讨论目
荧光显微镜:内置了照明和滤光片用于成像
相机技术的发展进步使生物应用和工业应用中的显微镜发生了革命性的变化。因此,生物学家或工程师再也无需耗费数小时使用目镜进行观察和不断地对焦。此外,当今的数字视频显微镜系统也简化了数据记录和数据分析的流程。更多有关此系统类型的一般信息,请参阅数字视频显微镜调整件设置。要真正了解数字视频显微镜系统的好处,
倒置荧光显微镜技术参数、构造及成像原理
倒置荧光显微镜是近代发展起来的新式荧光显微镜,特点是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色
生物育种前沿共性技术专题论坛举办
近日,由中国农学会承办的第二十七届中国科协年会“生物育种前沿共性技术”专题论坛在北京举办,来自国内高校、科研院所、科技型企业等单位的近70位相关专家学者和青年科研人员参加会议。中国科学院遗传与发育生物学研究所研究员高彩霞,中国农业科学院作物科学研究所研究员李英慧,中国农业科学院北京畜牧兽医研究所研究
Nature-Methods:新型光片超分辨显微成像实现精细观测
华中科技大学课题组3月12日在Nature Methods在线发表研究论文,提出了一种基于深度学习的超分辨荧光显微镜,实现对活细胞的精细动态和相互作用进行快速、三维、长时程地观测。 细胞的稳态离不开内部多种亚细胞结构的精确分工和协同合作,洞悉细胞内细胞器/蛋白分子的精密运转是一项重要的生命科学
显微成像小课堂丨宽场荧光显微镜
在活体细胞成像应用中,宽场荧光显微镜有助于观察放置于显微镜载物台上特定的环境室中生长的粘附细胞的动力学特性。在最基本的配置中,配备有EPI荧光照明的标准倒置组织培养显微镜与区域阵列检测器系统(通常是CCD摄像机)、合适的荧光滤色片和光闸系统耦合,以限制细胞过度暴露于有害的激发光。基本荧光显微镜依
认识荧光显微镜的光立方
什么是荧光? 荧光即为物质中的电子吸收光的能量由低能状态转变为高能状态,再回到低能状态时释放出的光,是非温度辐射光——冷光。即:物质吸收短波光,进入激发态, 发射出的长波光。 无论是物质的自发荧光、荧光染料还是融合表达的荧光蛋白,均需经过特定波长的光激发(激发光Excitation),电子发
认识荧光显微镜的光立方
什么是荧光?荧光即为物质中的电子吸收光的能量由低能状态转变为高能状态,再回到低能状态时释放出的光,是非温度辐射光——冷光。即:物质吸收短波光,进入激发态, 发射出的长波光。无论是物质的自发荧光、荧光染料还是融合表达的荧光蛋白,均需经过特定波长的光激发(激发光Excitation),电子发生迁移后,能
光学显微镜的主要观察方法之荧光观察
荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过
X光成像技术现状
X光成像技术在医疗、安检、工业探伤、无损检测等领域中具有举足轻重的地位。传统的X光成像技术采用的是模拟技术,X光影像一旦产生,其图像质量就不能再进一步改善,且其信息为模拟量,不便于图像的储存、管理和传输,限制了它的发展。 X光图像的数字化不仅可利用各种图像处理技术对图像进行处理,改善图像质量,
显微CT之活体小鼠骨架成像
2009年,国内第一家小动物Micro CT实验平台坐落于广州中科恺盛医疗科技有限公司。几年来,实验平台为国内各大医学院校、医院及研究机构提供了大量的专业服务,屡受好评!中科恺盛自主研发小动物Micro CT系统,功能强大,集数据采集、数据格式转换、二维图像处理、面绘制、体绘制、图像分割、图像配
小动物光声成像技术原理及应用(二)
Endra Nexus 128是目前市场上唯一一款完全的3-D光声成像系统,能够精确确定探针在组织中的分布,而其他的光声系统是基于切片式的扫描系统。完全的3-D光声成像系统从而决定了Nexus128在空间分辨率、灵敏度、动物处理速度、扫描速度和通量方面都优于其他同类产品,具体原因如下:等向性分辨率
荧光显微镜是什么光路系统?
在显微镜下,由于某些物质的光学特性,普通正置显微镜不能看清楚其内部结构,而其拥有另外一种特性,比如细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,利用这种物质的光学特性,研发出了专业的显微显示设备,即荧光显微
荧光显微镜的落射光装置
新型的落射光装置是从光源来的光射到干涉分光滤镜后,波长短的部分(紫外和紫蓝)由于滤镜上镀膜的性质而反射,当滤镜对向光源呈45。倾斜时,则垂直射向物镜,经物镜射向标本,使标本受到激发,这时物镜直接起聚光器的作用。同时,滤长长的部分(绿、黄、红等),对滤镜是可透的,因此,不向物镜方向反射,滤镜起了激
荧光显微镜技术简介
荧光显微镜是荧光显微检测的专用工具,它是光学显微镜的—种。除了具有光学显微镜的基本结构和光学放大作用外,基于荧光的特性,还具备以下独特的功能:①提供足够能量的能激发出荧光的光源;②有着适应不同物质所博激发光涪的一组滤色片,从光源中选择合适的激发光谱,使析出的光谱与该物质的吸收光谱重合,以期望获得z
荧光显微镜成像质量的决定因素
荧光光学系统的成像质量主要取决于像的衬度和像的亮度,像的衬度是由样品中激发出的荧光与背景上观察到的光之比决定的。背景光包括透过截止激发光的滤色片的杂散激发光,样品组织成分的自发荧光和光学系统的自发荧光和杂散光,在荧光显微术中尽全力要解决的是既获得最佳的像衬度,同时又维持像有足够亮度,这两者往往是矛盾
ADS信号完整性专题之串扰(二)
2、耦合长度:改变耦合长度,其他参数保持不变。长度由1inch开始,截止到6inch,每隔1inch仿真一次,变化参量和扫描参数如下:得到的仿真结果如下:随着耦合长度的增加,其远端串扰一直在增加,在1inch之前就已经达到饱和长度,所以在此实验中,1inch之后增加耦合长度对近端没有影响3、传输线间
如何选择合适的光源获得优质的荧光成像
荧光显微镜是利用特定波长的激发光照射被检物体产生荧光进行镜检的显微光学观测技术,已有100多年历史。在生物医学领域应用广泛,大多数实验室都有配备高端或者常规的显微成像系统,荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有
微型光片发生器可用于大脑活动光片成像
让神经科学家能够记录和量化活体大脑功能活动的工具需求量很大。传统上,研究人员使用功能磁共振成像等技术,但这种方法不能记录高空间分辨率的神经活动或运动的受试者。近年来,光遗传学工具利用光来控制神经元,并记录组织中的信号,这些组织经过基因改造后可以表达光敏和荧光蛋白。然而,现有的脑光信号成像技术在大
X光成像技术的发展
随着科技的进步,X线摄影经历了从最早的摄影干板到胶片/增感屏组合,到目前数字化X射线图像的各阶段的进步。二十世纪60年代末至70年代初以来,随着计算机与微电子技术的飞速发展,席卷全球的数字化技术和计算机网络与通信技术已经对X光影像设备产生广泛而深远的影响。 影像设备的数字化和网络化以及占医学信