人肌肉基因首次插入面包酵母DNA
荷兰研究人员成功将人类肌肉基因插入面包酵母的DNA中,这是科学家首次将如此重要的人类特征植入酵母细胞,得到的人源化酵母模型,可作为药物筛选和癌症研究工具。相关论文发表于《细胞报告》杂志。 代尔夫特理工大学研究团队添加到酵母细胞中的特征由一组十个基因控制,人类没有这些基因就无法生存。这组基因包含了人类代谢途径的“蓝图”。代谢途径指分解糖以获得能量并在肌肉细胞内构建细胞组成部分的过程,这一过程在许多疾病如癌症中起作用,这意味着改性酵母可以作为医学研究的工具。 研究人员表示,与人类细胞或组织相比,酵母是一种神奇的有机体,因为它生长简单,其DNA可被很容易地修改,许多关键发现,如细胞分裂周期,都得益于酵母。 此前,该团队成功地构建了人工染色体,将其作为DNA平台为酵母构建新功能。自此,他们就在探究能在多大程度上添加多个人类基因和整个代谢途径,以及细胞能否作为一个整体发挥功能。遵循这一思路,团队设计出了新型人源化酵母。 研......阅读全文
人肌肉基因首次插入面包酵母DNA
荷兰研究人员成功将人类肌肉基因插入面包酵母的DNA中,这是科学家首次将如此重要的人类特征植入酵母细胞,得到的人源化酵母模型,可作为药物筛选和癌症研究工具。相关论文发表于《细胞报告》杂志。 代尔夫特理工大学研究团队添加到酵母细胞中的特征由一组十个基因控制,人类没有这些基因就无法生存。这组基因包含了
基因传递到肌肉实验
实验材料 新生的小鼠试剂、试剂盒 乙醇PBS胶原蛋白酶 分散酶 氯化钙溶液F-10肌肉原代细胞培养基分化培养基仪器、耗材 用于断头术的器具或者是用于二氧化碳吸人的装置锋利的弯手术剪(灭菌) 组织培养板灭菌的剃刀刀片尼龙网桌面离心机胶原包被的组织培养板带相位光轴的倒置显微镜实验步骤 1.用断头术或者二
对小鼠通过-quadricpeps-肌肉的肌肉注射进行-DNA-疫苗管理
实验材料小鼠试剂、试剂盒麻醉剂DNA 疫苗溶剂乙醇仪器、耗材吸管针头电子剪切机棉球或纱布垫实验步骤1.通过腹腔注射 0.3 ml/18~20 g 总体重麻醉剂麻醉一只小鼠,使用 26 G 针头的 1ml 注射器。这将使小鼠麻醉 15~20 min。2.用 28G 针头的 0.3 ml 注射器装人足够
面包酵母菌种选育
目前,与面包酵母菌种改良有关的研究主要集中在耐高糖的机制、麦芽糖的利用、低温适应性、蜜二糖的利用和乳糖的利用等方面。其中耐高糖机制和麦芽糖的利用与面包酵母发酵力的关系非常密切。 面包酵母对由面团中的糖或盐,或者两者引起的高渗透压相当敏感。面包面团中含有较多的糖、盐等成分,均产生渗透压。耐高渗透
面包酵母的发酵机理介绍
面包酵母加入面团中后,在适宜的温度下便开始生长繁殖。它首先利用面团中的单糖和蔗糖,产生CO2气体和各种发酵产物。在酵母生长、发酵的同时,面粉中的β-淀粉酶将面粉中的淀粉转化为麦芽糖。麦芽糖的增加,为酵母菌进一步生长、发酵提供了可利用的营养物质。酵母菌菌体本身分泌麦芽糖酶和蔗糖酶,将麦芽糖和蔗糖分
面包酵母应具备的特点
在发酵面团的过程中,面包酵母处于从好氧向微好氧迅速变化的特殊生理环境,这就要求面包酵母必须具备如下基本特性:①具有潜在很高的糖酵解酶活性;②具有快速适应底物变化的能力;③具有合适的蔗糖酶(或其它水解酶)的活性;④具有潜在很高的麦芽糖发酵速度;⑤具有合成在厌氧条件下生活所必需的酶及辅酶的能力。
面包酵母的市场种类介绍
面包酵母包括鲜酵母和活性酵母两类,根据面团含糖量的不同,又可分为高糖酵母、低糖酵母和无糖酵母。面包酵母的生产是采用糖蜜为原料,将酵母菌通风发酵培养后,经过分离、洗涤、压榨而制得的含水份71%-73%的产品为鲜酵母,鲜酵母经过造粒、干燥值得水份7-8.5%酵母为活性干酵母。低糖酵母发酵时,面团一般
关于面包酵母的基本介绍
面包酵母(Saccharomyces cerevisiae)是一种单细胞微生物,含蛋白质50%左右,氨基酸含量高,富含B族维生素,还有丰富的酶系和多种经济价值很高的生理活性物质。 几千年前人类就用面包酵母发酵面包和酒类,在现代食品工业方面,广泛用作人类主食面包、馒头、包子、饼干糕点等食品的优良
简述面包酵母的主要作用
面包酵母是面包生产过程中最重要的微生物发酵剂和生物疏松剂,在面包生产中起着关键作用。 面包酵母作为一种食品添加剂,它能利用面团中的营养物质进行发酵,产生CO2和醇类、酯类等香味成分,使面团膨松、富有弹性,并赋予面包特有的色、香、味形,提高面团营养价值和人体营养吸收利用率等突出优点而广泛用于面包
美发现与肌肉耐力有关的基因
据美国《大众科学》网站7月18日报道,发表在18日美国《临床研究》杂志上的最新研究显示,移除IL-15Rα(白细胞介素-15受体阿尔法)基因会增强老鼠的耐力。也许在不久的将来,人类能通过让某种基因变异来提高身体耐力。 该研究由美国宾夕法尼亚大学的生理学家特耶沃·库拉纳领导的科
基因编辑技术有望治愈肌肉萎缩症
炽热的基因组编辑工具CRISPR又取得了一项成就——研究人员利用它治疗了小鼠的一种严重肌肉萎缩症。 基因编辑技术CRISPR有望用于治疗肌肉萎缩遗传病。图片来源:C. E. Nelson等 3个研究团队于2015年12月31日在美国《科学》杂志上报告说,他们使用CRISPR剪掉了
《Nature-Communications》神经肌肉疾病基因疗法
杜氏肌营养不良症(Duchenne muscular dystrophy,DMD)是一种罕见的渐进性遗传疾病,据统计,全球平均每3500个新生男婴中就有一人罹患此病。,它是儿童最常见的神经肌肉疾病,与编码抗肌萎缩蛋白(dystrophin)的DMD基因异常有关。患者在学龄前就会因骨骼肌不断退化出
面包酵母的生产工艺介绍
我们今天所熟知的面包酵母生产工艺是在19世纪末至本世纪20年代大约50年左右的时间内正式形成的。这期间面包酵母生产新工艺的主要有: (1)通气培养的广泛应用:19世纪70年代,巴斯德效应的发现为酵母的通风培养法奠定了理论基础,即在有氧条件下,酵母的繁殖速度加快,而酒精的产率下降。1877年,哥
研究发现与罕见肌肉疾病有关的基因
研究者在对肌肉形成的调节的分子研究中,发现了一个在人类罕见肌肉疾病中可能起到重要作用的基因——Srpk3。该基因突变的小鼠出现与人类中央核性疾病非常相似的情况,目前研究者正在寻找出现该新基因突变的病人来进一步证实。研究结果发表于9月第1期的《Gene》。 中央核性疾病有许多
面包酵母的性能指标介绍
增殖率:即面包酵母在标准YPD培养基上培养一定时间后菌体量的变化,通常用A660的变化来表示。增殖率低的面包酵母不具有实用价值。产气量:影响面包的结构和疏松程度。延迟期;影响面团的发酵速度,延迟期长的面包酵母不具有实用价值。蔗糖酶活力:影响含糖面团的发酵速度。麦芽糖酶活力:影响无糖面团的发酵速度
基因检测DNA分析
DNA分析主要用于识别单个基因异常引发的遗传性疾病,如亨廷顿病等。DNA分析的细胞来自血液或胎儿细胞。
基因大规模变异速检技术问世
马萨诸塞大学医学院研究人员开发出一种新的突变基因筛查技术,该技术能在同一试管中检测出可能发生突变的每个氨基酸,并分析出每种突变对细胞造成的影响。新技术为检测遗传疾病、识别突变细菌和新疫苗开发开辟了一条捷径。该研究发表在近日的美国《国家科学院院刊》(PNAS)网站上。 人类染色体组中每个基因都由
PLoS-ONE:AMPK基因突变导致肌肉糖原增加
可能用于II型糖尿病治疗 一个由Mary-Ellen Harper、Robert Dent和Ruth McPherson博士领导的渥太华研究组联合来自美国加州伯克力的研究人员对AMPK(腺苷单磷酸活化蛋白激酶)基因进行了深入研究。这种酶控制着我们细胞中的能量数量。在两个没有亲缘关系的家族中的成员细
DNA(基因)检测-Southern-Blot
DNA(基因)检测-Southern BlotDNA吸印转移1.室温下将电泳后的琼脂糖凝胶浸入500ml溶液A中,摇动30分钟后换500ml新鲜溶液A再摇30分钟,使DNA双链碱变性。溶液A:5M NaCl 300.0ml10M NaOH 50.0mlH2O 650.0
DNA发现之前的基因
三一学院地处都柏林的中心,它那灰色的三层新古典主义建筑环绕在草坪和运动场周围。校园的最东头是另一栋灰色建筑,落成于1905年,则是另一种截然不同的风格。那是菲尔兹杰拉德大楼,或者依据其门楣上刻的字叫物理实验楼。这栋楼的最顶层是一个演讲厅,1943年2月第一个周五的傍晚,约有400余人聚集在这里,
面包酵母菌种改良所采取的基本方法介绍
目前对面包酵母菌种改良所采取的基本方法有:通过理化因素诱变、杂交和原生质体融合、基因工程等4种方式。 采用理化因素诱变面包酵母时,通常选用紫外线作为诱变剂。诱变育种中存在的问题是酵母菌两倍体细胞很稳定,不易表现出基因的改变。通常采用单倍体细胞或子襄孢子进行诱变。 杂交法是面包酵母育种的重要方
纯化DNA实验_基因组DNA的快速纯化
试剂、试剂盒尾部缓冲液蛋白酶 K仪器、耗材离心管玻璃棒实验步骤第 1 天1. 大约 1.5 cm 长的尾部活检样品放在一个 1.5 ml 盛有 0.7 ml 尾部缓冲液的小离心管中,加 35 ul 10 mg/ml 蛋白酶 K,在 55℃ 振摇温育过夜。尾部缓冲液(配 25 ml)50 mmol/L
中国科学家首次构建猪脂肪和肌肉DNA甲基化图谱
由四川农业大学和深圳华大基因研究院主导,中、美、英、加等四国共12个单位的50多位研究人员合作完成的研究成果《猪脂肪和肌肉组织的基因组甲基化图谱》,22日在国际著名学术杂志《自然-通讯》上发表。 该研究首次构建了猪不同部位脂肪和肌肉组织的DNA甲基化图谱,为预防人类肥胖疾病的
Science:新基因来自“垃圾”DNA
“新基因从何而来?”是遗传学和进化生物学中长期存在的一个问题。来自加州大学戴维斯分校的研究人员证实,一些新基因是由非编码DNA以比预想更快的速度生成。这一研究发现发表在1月23日的《科学》(Science)杂志上。 论文的资深作者、加州大学进化和生态学教授David Begun说:“研究清
基因组DNA的提取
第一节 概 述DNA的提取通常用于构建文库、Southern杂交(包括RFLP)及PCR分离基因等。利用DNA较长的特性,可以将其与细胞器或质粒等小分子DNA分离。加入一定量的异丙醇或乙醇,的大分子DNA即沉淀形成纤维状絮团飘浮其中,可用玻棒将其取出,而小分子DNA则只形成颗粒状沉淀附于壁上及底部,
基因重组和DNA重组区别
基因重组是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。 在人类的生殖细胞中发现的46条染色体发生在生物体内基因的交换或重新组合。基因重组是生物遗传变异的一种机制,包括同源重组、位点特异重组、转座作用和异常重组四大类。DNA重组指DNA分子内或分子间发生的遗传
基因组DNA的定义
中文名称基因组DNA英文名称genomic DNA定 义组成生物基因组的所有DNA。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
外源DNA的基因特点
基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变绝大多数会导致疾病,另外的一小部分是非致病突变。非致病突变给自然选择带来了原始材料,使生物可以在自然选择中被选择出最适合自然的个体。含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(
基因组DNA的提取
基因组DNA的提取概 述 基因组DNA的提取通常用于构建基因组文库、Southern杂交(包括RFLP)及PCR分离基因等。利用基因组DNA较长的特性,可以将其与细胞器或质粒等小分子DNA分离。加入一定量的异丙醇或乙醇,基因组的大分子DNA即沉淀形成纤维状絮团飘浮其中, 可用玻棒将其取出,而小分
DNA基因突变的类别
按照基因结构改变分类小规模突变小规模突变影响基因中的一个或几个核苷酸 (只影响到一个核苷酸的突变称为点突变)。小规模突变包括:插入:将一个或多个额外的核苷酸添加到DNA中。它们通常由转座因子引起,或由重复元件错误复制所致。位于基因编码区的插入可改变mRNA的剪接(剪接位点突变)或引起阅读框架的移位(