亚细胞定位的GFP融合蛋白表达法

GFP是绿色荧光蛋白,在扫描共聚焦显微镜的激光照射下会发出绿色荧光,从而可以精确地定位蛋白质的位置。绿色萤光蛋白(GFP)是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。通过基因工程技术,绿色萤光蛋白(GFP)基因能转进不同物种的基因组,在后代中持续表达,并且能根据启动子特异性地表达。 使用GFP必须构建融合蛋白载体,并在转染之后有效表达。这样,若在荧光显微镜下看到细胞内某一部位存在GFP信号,说明和GFP融合的蛋白也存在于该部位,这样就达到了确定某物质亚细胞定位的目的。......阅读全文

杆状病毒表达系统用于表达单一非融合蛋白的转染质粒

  由于外加的多角体蛋白或其它的氨基酸可能对外源蛋白的生物活性或细胞定位产生影响,所以用于表达非融合型蛋白的转移载体被广泛应用。几种不同的策略被用于设计高水平表达非融合蛋白的转移载体:  (1)如pAcRP[5]系列等,都在多角体基因启动子启始密码ATG上游引入一个单一的限制性多克隆位点;  (2)

绿色荧光蛋白在信号转导中的应用

  新近研究发现,某些突变的 GFP 能够发生荧光共振能量转移 (fluorescence resonance energy transfer,FRET)。FRET 是一种从荧光分子的激发状态到临近基态接受分子之间量子力学能量转移的现象。FRET 发生的前提条件是,荧光接受分子必须在荧光提供分子释放

体细胞重组定位法介绍

原理相同于基因纯合化的定位方法。由于体细胞交换发生得较少,所以常用 X射线处理杂合体使之发生更多的体细胞交换。

无细胞表达系统——难度蛋白表达的福音

1964年有两个人开创了体外蛋白表达的先河,这两个人的名字大家必定不会陌生—马太和尼伦伯格。因为他们的创新思维让人类破译了编码氨基酸的64种翻译密码子。从此,体外蛋白表达开始为科学界所关注,不过彼时这个系统蛋白表达量低、持续时间短、稳定性差,使其未能得到进一步发展。到80年代中期Spirin等对其进

无细胞表达系统——难度蛋白表达的福音

   1964年有两个人开创了体外蛋白表达的先河,这两个人的名字大家必定不会陌生—马太和尼伦伯格。因为他们的创新思维让人类破译了编码氨基酸的64种翻译密码子。从此,体外蛋白表达开始为科学界所关注,不过彼时这个系统蛋白表达量低、持续时间短、稳定性差,使其未能得到进一步发展。    到80年代中期Sp

细胞自噬的蛋白定位介绍

  在研究自噬相关蛋白时,需对其进行定位。由于自噬体与溶酶体、线粒体、内质网、高尔基体关系密切,为了区别,常用到一些示踪蛋白在荧光显微镜下来共定位:  Lamp-2:溶酶体膜蛋白,可用于监测自噬体与溶酶体融合。  LysoTrackerTM 探针:有红或蓝色可选,显示所有酸性液泡。  pDsRed2

细胞融合技术仙台病毒法融合

仙台病毒法融合①两种细胞在一起培养,加入病毒,在4℃条件下病毒附着在细胞膜上。并使两细胞相互凝聚;②在37℃中,病毒与细胞膜发生反应,细胞膜受到破环,此时需要Ca2+和Mg2+,最适PH为8.0一8.2;③细胞膜连接部穿通,周边连接部修复,此时需Ca2+和ATP;④融合成巨大细胞,仍需ATP。

激光共聚焦显微镜观察GFP定位

实验概要本实验介绍了用激光共聚焦显微镜观察GFP在转基因植物中定位的技术。实验步骤1. 将构建好的目的基因与GFP(绿色荧光蛋白)的植物融合表达载体,通过农杆菌介导法转化野生型拟南芥,获得转基因株系;2. 获得的转基因株系制作切片:转基因株系植株的根尖用手术刀片切下,放入事先滴有磷酸缓冲液的载玻片上

真核表达载体pcDNA3.1GFP的构建

【原理】引物中设计入限制酶位点:由于PCR引物的5'末端可以增加一些非互补碱基,因此可以在两引物的5'末端设计单限制酶或双限制酶切位点。这样得到的PCR产物用限制酶消化产生粘性末端,即可与有互补粘端的载体DNA重组。这种克隆方法效率较高,且当两引物中设计不同酶切位点时,可有效地定向克

GFP:荧光蛋白的起源

作者: 罗辑科学        绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。   

GFP:荧光蛋白的起源

  绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。   1962年,下村脩和约翰逊在一

GFP:荧光蛋白的起源

     绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。       1962年,下村

GST融合蛋白(GST-fusion-protein-purification)的表达与纯化

原理GST 纯化系统是利用GST (glutathione-S-transferase )融合蛋白与固定的谷胱甘肽(GSH)通过硫键共价亲和,通过GSH交换洗脱的原理来进行纯化 。1ml树脂大约可结合5-8 mg融合蛋白,并可反复使用数次。试剂u IPTG(异丙基硫代-β-D-半乳糖苷) 2

细胞融合技术仙台病毒法融合法

①两种细胞在一起培养,加入病毒,在4℃条件下病毒附着在细胞膜上。并使两细胞相互凝聚;②在37℃中,病毒与细胞膜发生反应,细胞膜受到破环,此时需要Ca2+和Mg2+,最适PH为8.0一8.2;③细胞膜连接部穿通,周边连接部修复,此时需Ca2+和ATP;④融合成巨大细胞,仍需ATP。

GFP抗体|GFP抗体检测GFP、EGFP、YFP、EYFP、CFP抗体

检测GFP、EGFP、YFP、EYFP、CFP的GFP抗体GFP是绿色萤光蛋白(Green Fluorescent Protein)的简称,由238个氨基酸残基组成。GFP蛋白质最早是由下村脩等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范

绿色荧光蛋白(GFP)在科学研究上的应用

绿色荧光蛋白(greenfluorescentprotein,简称GFP)bs-2194P是一种能在蓝色波长光线激发下发出荧光的特殊蛋白质,正是这种神奇的性质,让它成为当今生物化学领域最有力的工具之一,被称为“生物北斗”。GFP在科学研究上有着惊人的用途,因为它能够使我们直接看到细胞内部的运动、分布

GFP在大肠杆菌中的诱导表达和细菌蛋白的超声破碎抽提

[实验原理] 把含有外源基因的表达载体转化的大肠杆菌在有相应抗菌素和诱导物的条件下培养,可以诱导外源蛋白在大肠杆菌中表达。利用溶菌酶、反复冻融或超声波破碎的方法将诱导培养的细菌的细胞壁破碎后,可使那些可溶性的外源蛋白释放出来,再利用硫酸铵沉淀、蛋白质层析技术和制备电泳等方法能够将外源

亚细胞定位用荧光显微镜能看到吗

目前进行亚细胞定位研究,提取拟南芥(Arabidopsis thaliana)(Arabidopsis thaliana)叶肉原生质体进行PEG转化。研究目标采用GFP/YFP融合蛋白,但是在LSM710观察时,叶绿体有很明显的背景,尽管有些细胞是明显看到了GFP荧光,远远强于叶绿体背景,但是拍的照

2015年最热门的质粒技术

  无论是克隆和表达、还是基因组编辑,质粒都是我们必备的工具。常用的质粒,实验室一般都有,或者隔壁实验室有,那就你有我有大家有。不过,对于基因组编辑这种新的应用,手头的质粒肯定不合适。2015年有哪些热门的质粒技术出现?Addgene最近有统计。  分裂的Cas9系统  大家都知道,Cas9蛋白是由

自噬双标腺相关病毒说明(一)

一.关于自噬及LC31. 自噬大自噬(macroautophagy),也就是通常说的自噬(autophagy),是真核细胞蛋白降解的途径之一。自噬可以被描述为细胞质内的成分(细胞器、蛋白等)被双层膜的囊泡包裹,形成自噬体(autophagosome),进而传递到溶酶体进行降解的过程。详细来说,自噬过

充满差异的单细胞蛋白表达

哈佛大学谢晓亮小组的最新研究结构显示,蛋白的数量(绿色)与mRNA的数量(红色)在各个细胞中有很大差异。  科学家们近日首次实现了对物种在整个表达谱范围内的蛋白表达噪声测量。该项成果是单分子技术与系统生物学交互融合的典范,预示了单细胞基因表达分析时代的来临。  在基因表达研究领域,传

无细胞蛋白表达系统的选择

图1.  与细胞内蛋白表达相比,无细胞蛋白表达系统能够显著地节约时间。 与基于细胞的蛋白表达系统相比较,无细胞蛋白表达系统具有独特的优势,包括节约时间、提高具有功能的、可溶的、全长蛋白的总体产量。本文介绍了根据模板类型、期望产率以及下游实验等因素来选择无细胞蛋白表达系统的标准。

表达蛋白检测实验_点印迹法

实验方法原理本方案用DNA点迹杂交检测噬斑以鉴定重组病毒。像点迹杂交一样,将感染细胞裂解物印迹在硝酸纤维素膜上(可参考「痘苗DNA检测实验」中「斑点杂交法」)。用可以识别外源基因表达蛋白的抗体与膜一起孵育,用125I 标记的蛋白 A 检测结合的抗体,还可应用化学发光检测系统,如 Amersham E

关于绿色荧光蛋白的发展历史介绍

  1962年,已经有文献报道科学家从多管水母属的发光型水螅水母(luminous hydromedusan Aequorea)中提取到了具有生物发光性质的蛋白质也就是绿色荧光蛋白。到了上世纪70年代,对生物发光的现象才有了一些新的进展。有科学家研究了多管水母属生物发光系统的分子内能量转移。到了九十

绿色荧光蛋白的研究与应用

1962年,已经有文献报道科学家从多管水母属的发光型水螅水母(luminous hydromedusan Aequorea)中提取到了具有生物发光性质的蛋白质。到了上世纪70年代,对生物发光的现象才有了一些新的进展。有科学家研究了多管水母属生物发光系统的分子内能量转移。到了九十年代初,科学家才克隆到

绿色荧光蛋白的研究与使用历史

1962年,已经有文献报道科学家从多管水母属的发光型水螅水母(luminous hydromedusan Aequorea)中提取到了具有生物发光性质的蛋白质。到了上世纪70年代,对生物发光的现象才有了一些新的进展。有科学家研究了多管水母属生物发光系统的分子内能量转移。到了九十年代初,科学家才克隆到

无细胞蛋白表达技术介绍

无细胞蛋白表达技术是指用含有蛋白合成必需的组分(核糖体,转运RNA,氨酰合成酶,启动/延伸/终止因子,三磷酸鸟苷,ATP,Mg2+和K+)的细胞裂解物在体外进行蛋白合成。与传统的基于细菌或真核细胞的蛋白表达系统相比较,无细胞蛋白表达系统具有独特的优势,包括节约时间、提高具有功能的、可溶的、全长蛋白的

GFP抗体—绿色荧光蛋白的单克隆和多克隆标签抗体

GFP(Green Fluorescent Protein,绿色萤光蛋白)是由下村脩等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。GFP标签可位于蛋白质的C端或N端,该系统已广泛 应用于各种细胞

细胞自噬的研究方法

正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有: 一、自噬诱导剂  (1) Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激(2) Carbamazepine/ L-690,330/ Lithium Ch

细胞自噬的研究方法

正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有:一、自噬诱导剂(1) Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激(2) Carbamazepine/ L-690,330/ Lithium Chlor