病毒入侵时,生命体如何自我保护?

在生命体内存在在这样的一种英雄主义:细菌在杀死入侵病毒的那一刻“壮烈牺牲”,与其“同归于尽”,以完成保护生命体的重任。早在20世纪50年代,科学家们就通过间接的手段检测到了一种同归于尽的自我保护行为,但受限于当时的软硬件水平,这一过程的实现机制,一直是困扰科学家们的谜题。10月2日,《自然》杂志刊发解决这一谜题的重要科研成果。中国科学院物理研究所副主任工程师丁玮团队、特聘研究员朱洪涛团队与中国医学科学院北京协和医学院病原生物研究所特聘教授崔胜团队合作,成功解析与原核短Argonaute(Ago)系统相关的高分辨率三维蛋白结构,彻底揭示了原核短Ago系统在病毒入侵前后所发生的结构变化,从而揭秘了这种英雄主义的功能机制。丁玮告诉《中国科学报》,自然界中的生命体时时刻刻都需要应对各种外部入侵,如细菌、病毒等。为了应对这些入侵,生命体的细胞会产生一种叫做核糖核酸的分子。这些核糖核酸分子可以通过一种叫做转录后基因调控的过程,对我们的基因进......阅读全文

原核短Ago在病毒入侵前后有啥变化?研究揭示

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/509647.shtm中国科学院物理研究所/北京凝聚态物理国家研究中心丁玮团队和朱洪涛团队与中国医学科学院北京协和医学院病原生物研究所崔胜团队合作,通过高分辨冷冻电镜技术与自主研发的自动化结构解析策略,在

我国冷冻电镜再发Nature-三维结构解析免疫机制

10月2日,《自然》杂志在线发表了我国科学家的一项关于免疫系统如何发挥作用的重要成果。通过海量的实验与计算,来自中国科学院物理所、中国医学科学院等单位的研究人员,成功解析与原核短Ago系统相关的高分辨率三维蛋白结构,同时彻底弄清楚了原核短Ago系统在病毒入侵前后所发生的结构变化。原核短Ago中辅酶I

我国科学家揭示生命体自我保护行为背后的分子机制

10月2日,《自然》杂志在线发表了我国科学家的一项关于免疫系统如何发挥作用的重要成果。通过海量的实验与计算,来自中国科学院物理所、中国医学科学院等单位的研究人员,成功解析与原核短Ago系统相关的高分辨率三维蛋白结构,同时彻底弄清楚了原核短Ago系统在病毒入侵前后所发生的结构变化。原核短Ago中辅酶I

原核短Ago系统在病毒入侵后所发生变化获揭示

  核糖核酸诱导的转录后基因调控在生命个体抵御外源入侵的过程中起到至关重要的作用。自然界中的生命体无时无刻都需要应对各种外部入侵,如细菌、病毒等。为了应对这些入侵,生命体的细胞会产生一种叫做核糖核酸的分子。这些核糖核酸分子可以通过一种叫做转录后基因调控的过程,对我们的基因进行调控。  我们都知道基因

科学家揭示外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理

RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译的目的。对比真核生物的Ago,原核生物的Ago展现出多样性,分为三个家族——长A型、长B型和短Ago

Nature:外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理

  RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译的目的。对比真核生物的Ago,原核生物的Ago展现出多样性,分为三个家族——长A型、长B型和短A

Argonaute(AGO)蛋白的结构和功能

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

关于AGO蛋白质的基本介绍

  Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。P

AGO2基因编码功能及结构描述

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。[由RefSeq提供,2009年9月]This gene e

AGO3基因编码功能及结构描述

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体[由

AGO2基因的结构特点及作用

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。

多种关键蛋白!非洲猪瘟病毒衣壳高分辨率电镜三维结构

  近日,中国科学院微生物研究所高福团队联合中国农业科学院哈尔滨兽医研究所仇华吉团队、南方科技大学王培毅团队、中国科学院生物物理研究所章新政团队以及微生物所施一团队,在非洲猪瘟病毒(African swine fever virus,ASFV)结构领域取得新进展,解析了非洲猪瘟病毒衣壳(Capsid

AGO3基因突变与药物因子介绍

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体[由

AGO3基因的结构特点和功能作用

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体。

AGO2基因突变与药物因子介绍

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。[由RefSeq提供,2009年9月]This gene e

贺福初院士、周钢桥研究员发表癌症新成果

  来自军事医学科学院放射与辐射医学研究所的研究人员,通过遗传关联研究和功能分析调查了AGO2单核苷酸多态性(SNPs)与鼻咽癌风险之间的关系。这项研究发布在本月的《BMC Cancer》杂志上。  国际著名细胞生物学家、遗传学家贺福初(Fuchu He)院士和军事医学科学院放射与辐射医学研究所的周

什么是Argonaute(AGO)?

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

《科学》:古老蛋白塑造细菌紧凑基因组

该发现可能有助于开发其它标靶Rho的抗生素  与人类相比,细菌不携带过多的“垃圾DNA”,它们的基因组要“整洁”得多。比如大肠杆菌大约90%的基因组都包含编码蛋白质的DNA,而人类基因组的90%都是非编码的“垃圾DNA”。 美国科学家近日研究发现,细菌基因组的这种“整洁”可能要归功于一种名为R

美生成单细菌三维化学图像

  美国能源部布鲁克海文国家实验室使用超亮X射线,对单个细菌进行了更高分辨率的成像,展示了一种称为X射线荧光显微(XRF)的成像技术,可作为生成小型生物样本三维图像的有效方法。这一成果发表在最新一期的《科学报告》上。   美国国家同步加速器光源Ⅱ(NSLS-Ⅱ)的科学家丽莎·米勒称,这是首次使用

Cell:解析出人teneurin蛋白的三维结构,竟类似于细菌毒素

  一类被称作teneurin的蛋白位于细胞的表面上,并与其他细胞表面上的其他蛋白相结合,从而进行细胞间通信。它们参与多个过程,包括胚胎发育、引导神经元轴突向正确的位置延伸从而与其他的神经细胞建立连接和有助这些连接(也称作突触)形成。  基于编码teneurin蛋白的基因序列,人们已隐约觉得tene

癌症相关的基因突变类型及临床解释-AGO2

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。

癌症相关的基因突变类型及临床解释--AGO3

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体。

RNA干扰相关知识Argonaute(AGO)

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

清华大学王宏伟研究组Cell发表首发性成果

  RNA干扰(RNAi, RNA interference)是敲低一个基因表达的最为常用的一种手段。内源性引起RNA干扰的小RNA主要是微小RNA (miRNA)。 到目前为止,人体内已经发现多达1800种微小RNA,越来越多的文献报道认为很多肿瘤的发生发展、转移等行为与微小RNA的异常表达密切相

叶克穷博士再发《PNAS》文章解析未知蛋白功能

来自中科院生物物理所结构与分子生物学中心生物国家生物大分子国家重点实验室(National Laboratory of Biomacromolecules)与北京生命科学研究所(National Institute of Biological Sciences,NIBS)的研究人员通过揭示存在于线粒

新大脑成像技术快速生成超高分辨率三维图像

  美国研究人员开发出一种新的大脑成像技术,能够以更高的分辨率快速对大脑三维成像,比其他方法更快地揭示整个大脑神经元的连接状况。  该研究由麻省理工学院、加州大学伯克利分校、霍华德休斯医学研究所和哈佛医学院研究人员合作完成。他们在17日的《科学》杂志上发表论文,对新技术进行了全面介绍。论文指出,新技

我国学者揭示Agos蛋白指导导向DNA链切割靶标DNA链机制

  近日,《Proceedings of the National Academy of the Sciences of the United States of America,PNAS》杂志在线发表题为“Two symmetric arginine residues play distinct

清华大学《Cell》文章:解决多个技术难题,终发首发性成果

  清华大学生命学院再次发表了一最新结构生物学成果:首次报道了人源核酸内切酶Dicer蛋白的全长高分辨率结构,同时还报道了人源核酸内切酶Dicer蛋白结合一种小RNA前体pre-let-7底物的两种不同结构状态。  这一研究成果公布在Cell杂志上,文章通讯作者为清华大学生命学院、清华-北大生命科学

研究揭示Agos蛋白指导导向DNA链切割靶标DNA链的机制

  2018年12月27日,《美国国家科学院院刊》(PNAS)杂志在线发表题为Two symmetric arginine residues play distinct roles in Thermus thermophilus Argonaute DNA guide strand-mediated

基因组的三维结构

  摘要: 阐明染色质复杂结构的技术有染色质构象捕获(chromatin conformation capture, 3C)及更高通量的衍生技术4C、5C,这些提供了长距离的染色质相互作用,但不能扩展到整个染色质相互反应组。在2009年末,两种新方法的迸发,有望绘出全基因组范围的相互作用图谱。