Cell解析蛋白质翻译调控机制
一个细胞的内部运作涉及到不计其数的单个分子,它们参与到重复循环的相互作用之中来维持生命。蛋白质形成就是这种生命活动的基础。 宾夕法尼亚大学的Joshua B. Plotkin教授说,由于蛋白质是细胞功能的基础构件,科学家们一直以来对于细胞生成蛋白质的机制都极其地感兴趣。 “蛋白质翻译对于所有的活细胞均极为重要。细胞借助于这一机制将遗传信息转变为能够真正为它做事的实体,使得细胞能够感知环境和生长,”Plotkin说。 在一项最新的研究中,Plotkin和博士后研究人员、文理学院的Premal Shah利用一种计算机模型,阐明了细胞中蛋白质翻译的限速机制。他们的研究发表发表在近期的《细胞》(Cell)杂志上。 与英国的科学家们展开合作,由宾夕法尼亚大学领导的这一科研小组在酵母细胞中构建了一个蛋白质翻译的理论模型。基于一张核糖体与信使RNAs(mRNAs)的实验快照推导出的参数,该模型模拟出了蛋白质......阅读全文
Cell解析蛋白质翻译调控机制
一个细胞的内部运作涉及到不计其数的单个分子,它们参与到重复循环的相互作用之中来维持生命。蛋白质形成就是这种生命活动的基础。 宾夕法尼亚大学的Joshua B. Plotkin教授说,由于蛋白质是细胞功能的基础构件,科学家们一直以来对于细胞生成蛋白质的机制都极其地感兴趣。 “蛋白质
研究揭示蛋白质翻译调控衰老新机制
近日,中国科学院广州生物医药与健康研究院研究员王涛课题组和研究员王杰课题组合作,研究揭示了甲基转移样蛋白-1和WD重复结构域4(METTL1/WDR4)介导转运RNA(tRNA)的N7-甲基鸟苷(m7G)修饰对于维持衰老过程中蛋白质组稳态的重要作用,研究结果阐明了tRNA修饰对于衰老的调控作用。相关
研究揭示蛋白质翻译调控衰老新机制
日,中国科学院广州生物医药与健康研究院研究员王涛课题组和研究员王杰课题组合作,研究揭示了甲基转移样蛋白-1和WD重复结构域4(METTL1/WDR4)介导转运RNA(tRNA)的N7-甲基鸟苷(m7G)修饰对于维持衰老过程中蛋白质组稳态的重要作用,研究结果阐明了tRNA修饰对于衰老的调控作用。相
蛋白质合成翻译阶段的基因调控介绍
蛋白质合成翻译阶段的基因调控有三个方面: ① 蛋白质合成起始速率的调控; ② MRNA的识别; ③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。 真核生物
“基因转录中止与蛋白质翻译新调控机制”等2个项目立项
教育部、中科院: 为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》的部署,经研究,决定批准国家重大科学研究计划“基因转录中止与蛋白质翻译新调控机制”等2个项目立项。 根据国家科技计划管理的统一安排,这批项目将于2013年7月启动实施。请有关单位按照国家重点基础研
一种调控蛋白质翻译的新方式
Sci Adv | RAS信号通路在肿瘤细胞中一种调控蛋白质翻译的新方式 蛋白质翻译是肿瘤发生、发展的关键过程。许多致癌信号通路针对性作用于蛋白质翻译的起始阶段,以满足癌细胞中合成代谢增强的需求。 近日,来自美国康奈尔大学Shu-Bing Qian(钱书兵)课题组在Science Advan
研究揭示种子萌发过程的翻译调控机制
种子作为植物繁衍的核心载体,其萌发与休眠是植物长期进化形成的关键适应性策略。这一策略不仅维系着物种延续和生态平衡,更直接影响农业生产和粮食安全。种子萌发是植物从休眠状态向活跃生长状态转变的关键节点,这一过程受多种内在因素和外界环境的调节,包括激素信号(如脱落酸ABA和赤霉素GA的拮抗作用),环境感知
研究揭示种子萌发过程的翻译调控机制
种子作为植物繁衍的核心载体,其萌发与休眠是植物长期进化形成的关键适应性策略。这一策略不仅维系着物种延续和生态平衡,更直接影响农业生产和粮食安全。种子萌发是植物从休眠状态向活跃生长状态转变的关键节点,这一过程受多种内在因素和外界环境的调节,包括激素信号(如脱落酸ABA和赤霉素GA的拮抗作用),环境感知
什么是翻译调控?
在mRNA翻译成蛋白质的水平上进行控制,包括控制蛋白质合成的速度、mRNA稳定性的控制、翻译起始的控制等。
关于基因表达的翻译调控和翻译后调控的介绍
1、基因表达的翻译调控 翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。 2、基因表达的翻译后调控 翻译后修饰(PTM)是对蛋
Molecular-Cell:蛋白质翻译后修饰调控植物胁迫反应
甲基化修饰与一氧化氮(nitric oxide; NO)依赖的亚硝基化修饰是高度保守的蛋白质翻译后修饰,这两类修饰参与调控众多生物学过程,包括调控非生物胁迫反应。但二者调控非生物胁迫的分子机制不甚清楚。 中国科学院遗传与发育生物学研究所左建儒研究组在亚硝基化蛋白质组学研究中发现拟南芥蛋白质
相分离调控蛋白翻译与生物节律的分子机制
清华大学生命科学学院吝易团队与杨雪瑞团队合作揭示了细胞利用相分离对蛋白质翻译进行精细的时空调控,从而维持昼夜节律周期的分子机制。相关成果以“区室化周期性蛋白质翻译精确调控生物节律(Circadian clocks are modulated by compartmentalized oscill
翻译水平上的调控
蛋白质合成翻译阶段的基因调控有三个方面:① 蛋白质合成起始速率的调控;② MRNA的识别;③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。真核生物mRNA的“扫描模式
研究揭示氧化还原关键酶翻译调控的新机制
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519885.shtm
基因翻译后调控的过程
翻译后修饰(PTM)是对蛋白质的共价修饰。像RNA剪接一样,它们有助于使蛋白质组更加丰富多样。这些修饰通常由酶催化。此外,诸如氨基酸侧链残基的共价添加这样的修饰过程通常可以被其它酶逆转。但蛋白水解酶对蛋白质骨架的水解切割是不可逆转的 。PTM在细胞中发挥着许多重要作用。例如,磷酸化主要涉及激活和失活
真核细胞翻译的调控介绍
值得注意的是,虽然在原核生物细胞内,翻译的起始过程依然有IF1、IF2、IF3三类因子的参与(真正耗能的步骤是IF2介导的起始tRNA入位和大亚基招募),但原核细胞几乎没有以这些蛋白因子为靶点进行的调控模式。在真核细胞内,由于大量翻译起始因子的参与,大量对于翻译的调控也是以这些蛋白因子为靶点进行
基因翻译的调控办法
任何体内的生物反应都必须在调控的作用下,才有意义。翻译的调控是十分精密复杂的。在原核生物里翻译调控的基本单位不是单个的mRNA而是mRNA中的单个阅读框。以ATP合成酶为例,在原核生物里,该酶包含A、B、C、D、E、F、G、H等多个亚基,其基因拷贝均为一份,在转录时转录到同一个mRNA上。而实际每个
原核细胞翻译的调控介绍
在整体上,原核细胞可通过改变核糖体结合位点(RBS)序列或者在RBS邻域制造二级结构来阻止小亚基和mRNA的结合进而阻止翻译的起始。一方面由于RBS序列固定,改变其序列将会造成所有mRNA停止翻译。另一方面由于改变序列并非快速准确的调控方法,针对单个转录本,原核细胞倾向于采取以下几种方式进行调控
肝癌仑伐替尼耐药的表观翻译调控机制获揭示
中山大学附属第一医院教授匡铭团队对METTL1介导的m7G修饰在肝癌仑伐替尼治疗耐药的功能与翻译调控机制进行了深入的研究,揭示了仑伐替尼耐药的翻译调控机制。相关研究近日发表于Cancer Research。肝细胞癌(HCC)是全球第三大肿瘤相关死亡原因,我国HCC发病和死亡人数约占全一半。我国超过7
哪些机制影响蛋白质的表达调控
原核生物的基因调控主要发生在转录水平上。根据调控机制的不同可分为负转录调控和正转录调控。(1)在负转录调控系统中,调节基因的产物是阻遏蛋白(repressor),起着阻止结构基因转录的作用,根据其作用性质可分为负控诱导和负控阻遏。在负控诱导系统中,阻遏蛋白不和效应物(诱导物)结合时,阻止结构基因转录
《Cell》揭示蛋白质降解调控机制
蛋白质不能像钻石一样永久地存在。当它们耗尽之时,需要在细胞内将它们降解成氨基酸,然后再循环利用生成新的蛋白。来自洛克菲勒大学和霍华德休斯医学研究所的研究人员,揭示了细胞的蛋白质回收站——蛋白酶体(proteasome)处理不必要的和潜在毒性蛋白的一条新途径。这一研究发现对于肌萎缩、神经退行性疾病
生物物理所发现核糖体翻译因子新的调控机制
9月10日,核酸领域的重要杂志《核酸研究》(Nucleic Acids Research) 在线发表了中科院生物物理研究所秦燕课题组和龚为民课题组合作的一项最新研究成果,该文章标题为Common chaperone activity in the G-domain of trGTPase pro
翻译调控的的过程和作用
翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。
基因表达的翻译调控的介绍
翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。
真核生物翻译的调控(1)
原核生物基因表达的调控主要在转录水平上进行,而真核生物由于RNA较为稳定,所以除了存在转录水平的调控以外,在翻译水平上也进行各种形式的调控。在蛋白质生物合成的起始反应中主要涉及到细胞中的四种装置,这就是:1.核糖体,它是蛋白质生物合成的场所;2.蛋白质合成的模板mRNA它是传递基因信息的媒介;3.可
真核生物翻译的调控(2)
5′端非翻译区的二极结构影响到调控蛋白与帽结构的接近,阻碍40S前起始复合体的装配和在mRNA上的扫描,起负调控的作用。但若二极结构位于 AUG的近下游,(最佳距离为14 nt),将会使移动的40亚基停靠在AUG位点,增强起始反应。真核的系列翻译起始因子可使二极结构解链,使翻译复合体顺利通过
发现线粒体翻译与细胞质翻译协调机制
中科院生物物理所与中科院动物所、军事医学科学院以及天津科技大学等机构合作,揭示了线粒体翻译与细胞质翻译之间的“协调”机制。研究还揭示了一种全新的男性不育发病途径,对男性不育临床干预具有重要借鉴意义。相关成果4月11日在线发表于《自然—结构域分子生物学》期刊。生物物理所研究员秦燕为通讯作者,该所
赖氨酸翻译后修饰及对蛋白质功能调控作用中期总结召开
7月29日,科技部重大科学研究计划“赖氨酸翻译后修饰及对蛋白质功能的调控作用”项目中期总结会议在中国科学院上海生命科学研究院健康科学研究所学术报告厅召开。会议由项目首席科学家、健康所研究员秦樾主持。科技部基础研究管理中心朱庆平副处长和健康所主持工作的副所长孔祥银研究员出席会议并讲话。 孔祥银
清华大学生科院Nature子刊解析翻译调控新机制
2014年11月2日,清华大学生命学院高宁、雷建林研究组共同在Nature Structural & Molecular Biology刊物上,在线发表文章“Structural basis for interaction of a cotranslational chaperone with
蛋白质生物合成翻译模板
不同mRNA序列的分子大小和碱基排列顺序各不相同,但都具有5ˊ-端非翻译区、开放阅读框架区、和3ˊ-端非翻译区;真核生物的mRNA的5ˊ-端还有帽子结构、3ˊ-端有长度不一的多聚腺苷酸(polyA)尾。帽子结构能与帽子结合,在翻译时参与mRNA在核糖体上的定位结合,启动蛋白质生物的合成;帽子结构和p