关于绿色荧光蛋白的应用介绍
由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。 荧光显微镜:GFP和它的衍生物的可用性已经彻底重新定义荧光显微镜,以及它被用来在细胞生物学和其他生物学科的方式。其中,最令人兴奋的就是用于超分辨显微镜成像。......阅读全文
绿色荧光蛋白简介
绿色萤光蛋白(Green fluorescent protein;简称GFP),由下村脩等人于1962年在维多利亚多管发光水母中发现,其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光,整个发光的过程中还需要冷光蛋白质水母素的帮助,冷光蛋白质与钙离子(Ca2+)可产生交互作用。2008
蛋白质的内源荧光与荧光探针
利用荧光光谱法研究蛋白质一般有两种方法。一是测定蛋白质分子的自身荧光(内源荧光),另一种是当蛋白质本身不能发射荧光时,通过非共价吸附或共价作用向蛋白质分子的特殊部位引入外源荧光(也称荧光探针),然后测定外源荧光物质的荧光。 蛋白质的内源荧光 含有芳香族氨基酸(色氨酸(tryptophan ,Trp
绿色荧光蛋白基因与红色荧光蛋白基因是同源的吗
绿色荧光蛋白基因与红色荧光蛋白基因是同源的(1)在该实验中,绿色荧光蛋白基因是目的基因.(2)③是将目的基因导入受体细胞的过程,当受体细胞是动物细胞时,采用最多也最有效的方法是显微注射技术.(3)GFP基因可以作为标记基因,标记基因的作用是鉴定受体细胞中是否含有目的基因.(4)动物细胞培养时,其培养
什么是绿色荧光蛋白?
绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分
绿色荧光蛋白的应用
由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。
荧光蛋白的发光原理
生命的颜色在海洋中,栖息着一类美丽而神奇的生物——水母。水母是一类古老的水生无脊椎软体动物。多数水母拥有颜色绚丽的伞性身躯及自体发光的能力,可散发出点点淡蓝色荧光,与摇曳的海水相映成辉,常引人无限遐想。没有人知道水母发光的能力是如何进化而来的,这些美丽的海洋精灵遍布在世界各地的海洋中,如繁星般点缀着
荧光蛋白的发光原理
绿色荧光蛋白是从水母体内发现的发光蛋白。分子质量为26kda,由238个氨基酸构成,第65~67位氨基酸形成发光团,是主要发光的位置。其发光团的形成不具物种专一性,发出荧光稳定,且不需依赖任何辅因子或其他基质而发光。绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因。荧
黄色荧光蛋白的应用
像绿色荧光蛋白一样,YFP是细胞生物学和分子生物学中一种非常常用的报告基因。目前,有三种改良的黄色荧光蛋白: Citrine, Venus, and Ypet。这三种改良的蛋白荧光更亮,更稳定,而且成熟更快,因此应用广泛。黄色荧光蛋白最常用于荧光共振能量转移,作为荧光能量的接受体(acceptor)
GFP:荧光蛋白的起源
绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。 1962年,下村脩和约翰逊在一
什么是绿色荧光蛋白
绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分子或
GFP:荧光蛋白的起源
作者: 罗辑科学 绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。
黄色荧光蛋白的概念
黄色荧光蛋白(Yellow Fluorescent Protein ,YFP)可以看做绿色荧光蛋白的一种突变体,最初来源于维多利亚多管水母( Aequorea victoria)。相对于绿色荧光蛋白,其荧光向红色光谱偏移,而这主要是由于蛋白203位苏氨酸变为酪氨酸。其最大激发波长为514 nm,最大
GFP:荧光蛋白的起源
绿色荧光蛋白(简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。GFP的荧光非常稳定,在激发光照射下,其抗光漂白能力比荧光素强很多。因此GFP及其变种被广泛地用作分子标记;此外,GFP还被用作砷和一些重金属的传感器。 1962年,下村
关于荧光蛋白的简介
荧光蛋白在某种定义下可以说是革新了生物学研究——运用荧光蛋白可以观测到细胞的活动,可以标记表达蛋白,可以进行深入的蛋白质组学实验等等。特别是在癌症研究的过程中,由于荧光蛋白的出现使得科学家们能够观测到肿瘤细胞的具体活动,比如肿瘤细胞的成长、入侵、转移和新生。
绿色荧光蛋白GFP性质
GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~490nm蓝光波长下更稳定。 GFP需要在氧化状态下产生荧光,强还原剂能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而
蛋白质的内源性荧光与荧光探针
利用荧光光谱法研究蛋白质一般有两种方法。一是测定蛋白质分子的自身荧光(内源荧光),另一种是当蛋白质本身不能发射荧光时,通过非共价吸附或共价作用向蛋白质分子的特殊部位引入外源荧光(也称荧光探针),然后测定外源荧光物质的荧光。 蛋白质的内源荧光 含有芳香族氨基酸(色氨酸(tryptophan
绿色荧光蛋白的功能介绍
绿色荧光蛋白(Green fluorescent protein,简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。虽然许多其他海洋生物也有类似的绿色荧光蛋白,但传统上,绿色荧光蛋白(GFP)指首先从维多利亚多管发光水母中分离的蛋白质。这种蛋白质最早是由下
绿色荧光蛋白融合抗体研究
融合抗体 近二十年来,抗体生成技术有了飞速发展,已经从细胞工程抗体(杂交瘤技术一单克隆抗体)发展到了第三代抗体:基因工程抗体,尤其是噬菌体抗体库技术的出现,解决了人源抗体的研制问题,促进了各种性能优良抗体以及具有多种功能的抗体融合蛋白的开发。单链抗体(Single-chain variable
绿色荧光蛋白的应用特点
由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。GFP和它的衍生物的可用性已经彻底重新定义荧光显微镜,以及它被用来在细胞生物学和其他生物学科的方
绿色荧光蛋白的发现过程
1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广
绿色荧光蛋白的基本结构
野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的
绿色荧光蛋白的发现过程
1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广
绿色荧光蛋白(GFP)的应用
骨架和细胞分裂 Kevin Sullivan's 实验室 酵母菌内SPB 和微管动力学 酵母菌中肌动蛋白的动力 果蝇中MEI-S332蛋白 果蝇有丝分裂和mRNA运输 网丙菌属细胞骨架 RNA剪切因子的核内运输 网丙菌属的趋化作用 网丙菌属中细胞骨架动力和细胞运动 核
LSCM表达荧光蛋白的组织
表达荧光蛋白的组织经冷冻切片制样后,可直接封片,观察并扫描图像,也可配合使用其它荧光染料进行免疫荧光抗体标记和核染色。同时表达GFP 和 RFP 荧光蛋白的组织切片,如还需作免疫荧光抗体标记,应选择可以被 633 nm 和 405 nm 波长激光器激发的荧光染料,如 CY5、Alexa fluor
绿色荧光蛋白的发现过程
1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广
绿色荧光蛋白的结构介绍
野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的
图解光诱导荧光蛋白系统
GFP蛋白曾经为蛋白质定位等相关研究带来革命性的进展,而随着具有和GFP类似遗传学特征的光学指示剂蛋白的出现,蛋白质相关的动态研究也将获得更多的手段和技术,本文详细介绍了激光诱导荧光系统在蛋白质研究中的应用。 近年来随着蛋白质学研究的进展,研究人员相继发现和特异克隆了一些特殊蛋白质。这些蛋
关于绿色荧光蛋白的简介
绿色荧光蛋白(Green fluorescent protein,简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。虽然许多其他海洋生物也有类似的绿色荧光蛋白,但传统上,绿色荧光蛋白(GFP)指首先从维多利亚多管发光水母中分离的蛋白质。这种蛋白质最早是
绿色荧光蛋白的结构特点
野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的
绿色荧光蛋白在胞外环境能激发荧光吗
绿色荧光蛋白在胞外环境能激发荧光吗绿色荧光蛋的发光机理比荧光素/荧光素酶要简单得多。一种荧光素酶只能与相对应的一种荧光素合作来发光,而绿色荧光蛋白并不需要与其他物质合作,只需要用蓝光照射,就能自己发光。在生物学研究中,科学家们常常利用这种能自己发光的荧光分子来作为生物体的标记。将这种荧光分子通过化学