寻找抗衰老的“金钥匙”更加远离疾病
欧美国家有很好的衰老研究和资助机构,为研究提供基础保障,但在中国却非常罕见,甚至在国家设立的科研项目里,与衰老基础生物学研究相关的也相对较少。 衰老是生命过程中必须经历的复杂过程。大量研究表明,衰老虽不是疾病,但却是许多慢性病的主因,如心血管疾病、糖尿病、神经退行性疾病、恶性肿瘤等。 近年来,随着遗传学与分子生物学、细胞生物学的结合,衰老的真实面目日渐浮出水面。但由于衰老机制的整体研究花费时间过长,不可控因素较多,其神秘面纱仍未被完全揭开。 为应对我国人口快速老龄化的挑战,揭开衰老谜团、找到抗衰老的“金钥匙”,成为生物医学界攻关的重点。 疾病的危险诱因 生物体的衰老过程包含了整体衰老、器官衰老、细胞衰老乃至生物大分子的衰老。就人类来说,衰老可表现为皮肤皱褶、相关激素分泌减少、多种脏器退行性变化等多种现象。 在日前举行的第四届中国衰老与抗衰老学术大会上,中国科学院院士、北京大学衰老研究中心主......阅读全文
JCI:端粒可以缓解疾病与衰老
来自Gladstone研究所的科学家们在小鼠试验中发现一种能够缓解人类疾病与衰老的新机制,这一机制或许能够解释人类疾病严重程度为何如此之高。这些都源于端粒-保护染色体随年龄增长不断缩短的末端结构-的重要作用。 端粒的逐渐失活与年龄增长以及疾病的发生之间存在紧密的联系,但端粒的长度是如何影响人类
新衰老机制:自私基因加剧炎症以及和衰老相关疾病
衰老影响着每一个生物,但是导致衰老的分子过程仍然是一个有争议的话题。虽然许多因素都促进衰老过程,但动物衰老的一个共同主题是炎症——这可能被一类自私的遗传因子放大。 人类的基因组中到处都是自私的遗传基因,这些重复的基因似乎对宿主没有好处,反而只想通过在宿主基因组中插入新的拷贝来扩增自己。一类被称
Sci-Signal:导致衰老有关疾病的分子开关
马萨诸塞州总医院(MGH)领导完成的一项调查研究已经确定了一种分子开关,其控制肌肉萎缩、阿尔茨海默氏病等疾病相关的炎症。 相关研究刊登在Science Signaling杂志上,在报告中,研究小组在衰老相关疾病的几种动物模型中,发现调节蛋白SIRT1的信号分子即一氧化氮对于诱导炎症和细胞死亡是
Nature提出新概念:衰老疾病的种子
两位神经病学权威研究人员提出了一个新的理论,其有可能统一科学家们对于几种神经退行性疾病的认识和思考,为对抗这些疾病提供新治疗策略。研究人员将这一理论和支持依据发表在9月5日的《自然》(Nature)杂志上。 在这篇论文中,来自埃默里大学Yerkes国家灵长类动物研究中心的Mathias J
寻找抗衰老的“金钥匙”-更加远离疾病
欧美国家有很好的衰老研究和资助机构,为研究提供基础保障,但在中国却非常罕见,甚至在国家设立的科研项目里,与衰老基础生物学研究相关的也相对较少。 衰老是生命过程中必须经历的复杂过程。大量研究表明,衰老虽不是疾病,但却是许多慢性病的主因,如心血管疾病、糖尿病、神经退行性疾病、恶性肿瘤等。
科学家称节食或可抵抗疾病减缓衰老
节食是一种时尚。自助手册承诺它会燃烧多余的脂肪、修饰DNA以及延长寿命。一项新科学研究支持少吃的健康观点。这项临床试验表示,每月减餐5天有助预防或治疗与衰老相关的疾病,如糖尿病和心血管疾病。 “做这类研究并非无足轻重。”美国加州圣迭戈索尔科生物研究所昼夜节律生物学家、并未参加此项研究的Sat
刘德培院士:治疗疾病不妨先揭开衰老谜团
目前,全球老龄化及重大疾病防治形势愈发严峻,预计到2030年,16%的中国人在65岁以上,总数将超过2亿,各种重大疾病也将呈“井喷式”爆发。研究证实,衰老是心血管疾病、神经退行性疾病、癌症等诸多复杂疾病的共同危险因素,阐明衰老机制将为治疗多种疾病带来希望。 衰老是涉及诸多生物学事件的复杂过程,
肌肉衰老与损伤相关疾病治疗有了新策略
记者4月3日从首都医科大学附属北京积水潭医院获悉,近日,北京市创伤骨科研究所积水潭肌少症研究中心在国际知名期刊《Small》和《Materials Today Bio》上发表两篇重要成果,深入探讨了金纳米颗粒(Gold nanoparticles,Au NPs)在调节巨噬细胞极化和促进骨骼肌再生方面
【盘点】衰老与疾病的关联性研究进展
人为什么会变老?对于人类来说,如何才能长生不老真的是一个令人着迷的问题。但是至今为止都没有一个让人满意的答案。衰老一直是生命过程中的核心环节,也是影响整个人类社会健康发展的重要问题。目前世界各国均面临着严重的人口老龄化,数据显示到2050年约三分之一的中国人口年龄将超过60岁。因此,深入了解衰老
每周饿五天或有助抵抗疾病与减缓衰老
节食是一种时尚。自助手册承诺它会燃烧多余的脂肪、修饰DNA以及延长寿命。一项新科学研究支持少吃的健康观点。这项临床试验表示,每月减餐5天有助预防或治疗与衰老相关的疾病,如糖尿病和心血管疾病。 “做这类研究并非无足轻重。”加州圣迭戈索尔科生物研究所昼夜节律生物学家、并未参加此项研究的Satch
新技术通过血液预测与器官衰老相关疾病风险
衰老是逃不开的话题。俗话说,年龄取决于心态,但12月6日发表于《自然》的一项新研究却表明,年龄取决于体内“最老”的器官。 该研究报道了一种可以测量心脏、大脑等单个器官衰老速度的简单血液测试方法。研究人员发现,当一个器官比人的实际年龄“大得多”时,与身体该部位相关的死亡和疾病风险就会上升。 一
NIH研究表明,高活性免疫与衰老性脑疾病有关
NIH/国家神经疾病与中风研究所的一项果蝇研究指出,人体的免疫系统可能在大脑老化损伤中起关键作用。研究结果基于改变Cdk5基因活性后,大脑老化过程加速,导致果蝇更早死亡,并在晚年时期患有飞行或行走障碍,以及更多的神经变性脑损伤迹象。 临床前研究表明,Cdk5是对大脑早期发育很重要的基因,可能与
-Gene-Dev:研究果蝇提示衰老相关疾病的发病机制
阿尔茨海默氏病和亨廷顿病通常都与老化相关,但她们之间的生物联系一直不甚明了。现在,Rutgers大学研究人员通过学习常见果蝇中小RNA分子,寻求解答上述问题。 Ammar Naqvi博士表示:利用果蝇,我们能够检测特定microRNA模式,当microRNA绑定到特定蛋白质时,会有助于
衰老诱发神经退行性疾病的原因是什么?
神经退行性疾病,包括阿茨海默症(AD)、脊髓侧索硬化(ALS)、额颞叶痴呆(FTD)等,都是与衰老相关的疾病。神经退行性疾病给患者以及家庭带来巨大的痛苦与负担,然而目前世界范围内还没有任何一种药物能够有效治疗神经退行性疾病。随着生活水平的提高和平均寿命的延长,该类疾病的患病人数会显著上升。世界卫
概述细胞衰老的衰老机制
氧自由基学说认为细胞衰老是机体代谢产生的氧自由基对细胞损伤的积累。端粒学说提出细胞染色体端粒缩短的衰老生物钟理论,认为细胞染色体末端特殊结构-端粒的长度决定了细胞的寿命。DNA损伤衰老学说认为细胞衰老是DNA损伤的积累。基因衰老学说认为细胞衰老受衰老相关基因的调控。分子交联学说则认为生物大分子之
线粒体蛋白酶在人类健康衰老和疾病中的新作用
近日,来自西班牙的科学家Carlos López-Otín在国际学术期刊发表了一篇综述性文章,就线粒体蛋白酶在人类健康,衰老和疾病中的新作用进行了总结讨论。 作者在文中指出,最近一些关于线粒体生物学的研究发现调节线粒体功能的蛋白水解酶存在高度多样性和复杂性。科学家们将线粒体蛋白酶根据其功能和细
酵母模型揭示:细胞器通讯能力下降导致衰老和老年疾病
在斯德哥尔摩大学和哥德堡大学五个课题组的共同努力之下,“整个项目旨在寻找解决衰老问题新途径,从长远来看,争取能减缓或治疗衰老相关疾病,如神经系统疾病和老年痴呆发作,”斯德哥尔摩大学教授Martin Ott说道。Martin Ott 在如今这个老龄化时代,老年人福利和医疗保健挑战日益增加。社会迫
线粒体蛋白酶在人类健康衰老和疾病中的新作用
近日,来自西班牙的科学家Carlos López-Otín在国际学术期刊发表了一篇综述性文章,就线粒体蛋白酶在人类健康,衰老和疾病中的新作用进行了总结讨论。 作者在文中指出,最近一些关于线粒体生物学的研究发现调节线粒体功能的蛋白水解酶存在高度多样性和复杂性。科学家们将线粒体蛋白酶根据其功能和
腹部脂肪增加?这项研究有助于预防衰老引发的代谢疾病
近日,耶鲁大学研究人员揭示了为什么随着年龄的增长,围绕在器官周围的“腹部脂肪”会增加,这一发现可以为改善代谢健康提供新的治疗可能性,从而减少由炎症引起的诸如糖尿病和动脉粥样硬化等疾病的风险。 这项研究由Waldemar Von Zedtwitz比较医学和免疫生物学教授Vishwa Deep D
Cell-Metabol-科学家阐明控制机体衰老及年龄相关疾病谜题
近日,一项刊登在国际杂志Cell Metabolism上的研究报告中,来自斯德哥尔摩大学的科学家们通过研究阐明了细胞功能与控制机体衰老相关联的分子机制,同时研究人员还发现了细胞器之间“交流”的日益恶化或许是引发机体衰老的重要原因。图片来源:ocw.mit.edu 研究者Martin Ott教授
《自然·衰老》:发现皮肤衰老的关键!
皮肤作为我们身体最外层的保护屏障,承受了时间的考验和生活的痕迹。随着年龄的增长,皮肤不可避免地经历一系列变化,如失去弹性、干燥和色斑等。皮肤衰老是一个复杂而多样化的过程,受到遗传、环境和内外因素的共同影响。除了外貌的变化,皮肤衰老还反映了身体内部的健康状态。表皮更新减慢、屏障受损和伤口愈合质量下降,
上海有机所发现衰老诱发神经退行性疾病的分子机理
神经退行性疾病,包括阿茨海默症(AD)、脊髓侧索硬化(ALS)、额颞叶痴呆(FTD)等,都是与衰老相关的疾病。神经退行性疾病给患者以及家庭带来巨大的痛苦与负担,然而目前世界范围内还没有任何一种药物能够有效治疗神经退行性疾病。随着生活水平的提高和平均寿命的延长,该类疾病的患病人数会显著上升。世界卫
“纳米磁铁”具延缓衰老和缓解神经退行性疾病的潜在功效
12月8日,中国科学院上海生命科学研究院营养科学研究所宋海云研究组与中国科学院上海应用物理研究所樊春海研究组合作的研究论文Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosop
Cell-Rep:科学家发现治疗衰老相关肠道疾病的新线索
小肠干细胞是保持肠道健康和正常功能的动力源泉,但是最近一项发表在国际学术期刊Cell Reports上的新研究表明这些细胞也会随人类一同衰老逐渐失去再生能力。 研究人员表示,这项研究首次表明小肠干细胞会随人类一起衰老,还首次提供了清晰证据表明小肠干细胞Wnt信号逐渐消失是导致衰老过程,使其失去
Nature:体内微生物促进中性粒细胞衰老加重炎症性疾病
近日,来自美国艾尔伯特爱因斯坦医学院的研究人员在著名国际学术期刊nature上发表了一项最新研究进展,他们利用小鼠模型发现体内中性粒细胞衰老与其促炎症活性具有正相关关系,并且中性粒细胞衰老会受到微生物的驱动。 血液中的分叶核中性粒细胞为机体对抗病原体提供了重要的免疫防护作用,但同时也会促进炎症
什么是衰老?衰老的本质是什么?
衰老是生命永恒的节奏。头发变白、牙齿脱落、皱纹出现……这是我们看得见的衰老;而内脏器官机能的衰退,比如反应迟钝、记忆力变差、抵抗力减弱、某个器官的疼痛…这是我们感知到的衰老;还有一些衰老是我们感知不到、看不见的。人体衰老所表现的组织器官结构退行性病变和机能降低,其本质是细胞衰减,而细胞的衰减又主要由
袁钧瑛首次揭示衰老与神经退行性疾病之间的分子关联
几十年来,无数科学家奋斗在研究神经退行性疾病的第一线,想要找到背后的生物学机理,为全世界的患者带来治疗的希望。那么多年过去了,人类在这一领域的进展依然不容乐观。目前,针对诸多神经退行性疾病,我们依旧缺乏有效的治疗方案。而对于其中最为常见的阿兹海默病,我们甚至开始怀疑,几十年来的假说是不是错了……
科学家公开致信谷歌创始人:-衰老是可以治愈的疾病
“长生不老”是人们永恒的梦想,炼丹的古人数不胜数,“青春永驻”也在传奇小说里经常出现,用现代科学的语言来说,就是“抗衰老”。无论从哪个角度来看,抗衰老研究都是十分热门的领域, 最近,分子生物物理学家 Maria Konovalenko 致信 Google 联合创始人 Sergey Brin,
中科院发现衰老诱发神经退行性疾病的重要分子机理
神经退行性疾病,包括阿茨海默症(AD)、脊髓侧索硬化(ALS)、额颞叶痴呆(FTD)等,都是与衰老相关的疾病。神经退行性疾病给患者以及家庭带来巨大的痛苦与负担,然而目前世界范围内还没有任何一种药物能够有效治疗神经退行性疾病。世界卫生组织预测,到2040年,神经退行性疾病将会取代癌症,成为人类第二
课题组首次揭示衰老与神经退行性疾病之间的分子关联
几十年来,无数科学家奋斗在研究神经退行性疾病的第一线,想要找到背后的生物学机理,为全世界的患者带来治疗的希望。那么多年过去了,人类在这一领域的进展依然不容乐观。目前,针对诸多神经退行性疾病,我们依旧缺乏有效的治疗方案。而对于其中最为常见的阿兹海默病,我们甚至开始怀疑,几十年来的假说是不是错了……