强迫症有救了!最新研究帮助开发强迫症疗法

近日,一篇发表在国际杂志Nature Communications上的研究论文中,来自韩国延世大学等处的研究人员通过研究揭示了突触粘附分子的三维结构,突触粘附分子可以调节突触的发生,该研究同时也揭示了突触起始阶段形成的分子机理。 某些大脑疾病,比如强迫症(OCD)或双极神经元障碍都是由突触的功能异常所引发,研究人员开展这项研究,目的在于揭示诸如这类疾病的发病机制,并且开发新型治疗该类疾病的疗法。 文章中,研究者Kee Hun Kim表示,一种存在于神经元膜间名为Slitrk的蛋白,可以突触前白细胞常见的抗原相关受体蛋白蛋白酪氨酸磷酸酶(LAR-RPTPs)相互作用,并且产生一种蛋白复合物,而且Slitrk也参与突触形成的起始阶段,可以平衡神经元的兴奋信号及抑制信号。 在一种神经障碍中两种蛋白可以引发突触的异常,从而引发神经性精神病,比如自闭症、癫痫症及OCD等,然而由于这些特殊蛋白的结构及其突触发生的功能尚不清楚,因此......阅读全文

突触的含义以及横过突触空隙传递神经讯号的步骤

突触(synapse)是神经纤维间的连繫。所有的神经纤维都是以轴突末稍(dendrite)连到其它神经纤维的树突末稍(axonbrush)。而且在轴突末稍和树突末稍间留有一个空隙,称为突触空隙(synspticcleft)。如下图所示。  横过突触空隙传递神经讯号的步骤: (1)神经讯号到达轴突末稍

Nat-Commun:新技术可观测到神经突触中的单个蛋白

  我们的大脑包含数百万个突触-这些连接在神经元之间传递信息。在这些突触中有数百种不同的蛋白质,这些蛋白质的功能障碍会导致精神分裂症和自闭症等疾病的发生。  最近,麻省理工学院以及哈佛大学和麻省理工学院的研究人员现在已经设计出一种新方法,可以以高分辨率对这些突触蛋白快速成像。使用荧光核酸探针,它们可

遗传发育所神经突触发育研究取得新进展

  神经突触是神经元之间进行信息交流的特化结构。长期以来,神经突触的发育与重塑是神经科学研究的核心科学问题。突触重塑是生物个体发育过程中神经环路的形成以及生物对生理和(或)环境变化的适应过程中普遍存在的生物学现象。同时,突触重塑的异常会导致许多重要的神经疾病。然而,我们对突触重塑的分子

研究揭示APOE4加剧α突触核蛋白病变

  科学家们已经确定了神经退行性疾病的几种遗传风险因素。在这些遗传风险因素中,载脂蛋白E(APOE)ε4等位基因(APOE4)是导致迟发性阿尔茨海默病的最强遗传危险因素,主要是通过驱动淀粉样β病理引起的。最近,人们还发现APOE4是路易体痴呆(Lewy body dementia, LBD)的一种遗

陈宜张著作《突触》:研究“突触”的一块基石

   读陈宜张院士沉甸甸的学术著作《突触》,我们深切感受到的是一位老科学家在科学征程上执着追求的赤诚。陈宜张已87岁,成就卓著,仍没有懈怠,辛勤耕耘,在独立出版54万字的《神经科学的历史发展与思考》五年之后,又以一人之力推出大作《突触》。其为神经科学传道授业的热忱,不能不让我们这些学界晚辈为之汗颜。

蛋白质上海设施揭示神经系统突触蛋白组织新机制

  8月26日,国家蛋白质科学研究(上海)设施五线六站用户香港科技大学生命科学部嘉里理学教授张明杰及其团队在《细胞》(Cell)杂志发表题为Phase transition in postsynaptic densities underlies formation of synaptic compl

简述突触核蛋白错误折叠

  研究发现α-突触核蛋白正常、错误折叠及其寡聚化之间存在动态平衡,当这种平衡被打破后原纤维迅速聚集成大分子、不溶性的细纤维;α-突触核蛋白在不同的影响因素下会表现出许多种形态,包括舒展态、溶解前球型态、α-螺旋态(膜结合),β-片层态、二聚体态、寡聚体态、以及不可溶的无定型态和纤维态;α-突触核蛋

研究发现:大脑中有一种能塑造神经突触的分子

  据每日科学12月9日报道,一个美德联合科研小组发现,大脑中有一种分子不仅能连接脑细胞,还能改变人们的学习方式。该研究由美国国家卫生研究院和一家慈善组织资助,研究成果发表在12月9日出版的《神经元》杂志上,有助于研究人员找到提高记忆的方法,并用于治疗神经错乱。   脑细胞之间的连接称为突触,可以

突触核蛋白与synphilin1蛋白结合

  Engelender等运用酵母双杂交技术发现synphilin-1蛋白能作为调节分子将α-突触核蛋白锚钉在参与囊泡转运和细胞骨架功能的蛋白分子上面[25];synphilin-1蛋白是一个90kDa的胞内蛋白质,含有ANKYRIN样重复单位、一个螺旋结构域和可能的ATP/GTP结合位点;Kawa

神经突触仿生器件研制成功

  记者日前从东北师范大学获悉,在国家自然科学基金及国家重大科学研究计划的资助下,该校刘益春研究组利用InGaZnO材料,构造了具有自主学习和记忆能力的神经突触仿生器件,在单一无机器件中实现了多种生物突触功能。相关成果发表在国际学术期刊《先进功能材料》上,并被选为标题页文章进行了重点报道。   据

清华研发出首个人工神经突触

  让电脑像人类的大脑一样学习和记忆是一个令科研人员望而却步的挑战。因为人类的大脑拥有850亿个神经元和数万亿个神经突触,而且这些神经突触具有很强的可塑性,可以随着时间的变化自我调整,变得更强或更弱。   不过,据物理学家组织网11月12日报道,清华大学信息科学与技术国家实验室的科研人员近日在美国化

《Science》极早期发育时期惊现神经突触

  大脑新皮层(cerebral neocortex)掌权人脑功能,如有意识的思维和语言。在新皮层中,数十亿神经元被精确排列成有序的6层结构。在婴儿时期,这些神经元有次序地生成,再迁移至大脑表面。  “亚板神经元(subplate neurons)”是新皮层首批出现的神经元之一,它们在新皮层发育时短

Nature惊人发现:神经元通讯无需突触

  十一月二十一日的Nature杂志上发表了一项新研究,显示果蝇触须中相邻的嗅觉神经元可以相互阻断,即使二者并没通过突触直接相连。这种通讯手段被称为ephaptic coupling,神经元通过电场使其邻居沉默,而不是通过突触传递神经递质。   “Ephaptic coupling这一理论

神经所研究发现突触可塑性长时期维持的分子机制

  3月2日,《神经科学杂志》(The Journal of Neuroscience)发表了中科院上海生命科学研究院神经所神经元信息处理和可塑性研究组关于突触可塑性长时期维持的分子机制的最新发现。  外界刺激引起的神经细胞持续的活动可以诱导突触传递的长时程改变,这一现象称之为长时程

神经所研究揭示发育期视网膜突触功能具有可塑性

  《神经元》(Neuron)杂志于8月9日发表了中科院上海生命科学研究院神经科学研究所杜久林研究组题为“斑马鱼发育期视网膜兴奋性突触功能的长时程增强”的研究论文。该工作运用在体研究方法,首次发现了视网膜突触功能在发育时期具有长时程增强(long-term potentiation,

最新研究发现突触脉冲的强度与突触大小直接相关

  神经细胞通过突触彼此交流。近日,发表在《Nature》上的一项研究中,来自苏黎世大学神经信息学研究所和苏黎世联邦理工学院的Kevan Martin实验室的研究团队发现,这些联系似乎比以前认为的要强大得多。突触越大,传递的信号就越强。这些发现将有助于更好地了解大脑功能以及神经系统疾病是如何产生的。

简述突触核蛋白的发现史

  突触核蛋白最初于1988年由Maroteaux等利用纯化的抗胆碱能囊泡抗体在电鲟体内发现,并且确定其分布在神经突触前末梢和核周[1,2],同样突触核蛋白也在阿尔滋海默病的老年斑块内发现,但没有β-淀粉样蛋白含量高,突触核蛋白的中间部分(aa61-65)被命名为非β-淀粉样结构(NAC)。至今人们

突触核蛋白抗细胞凋亡作用

  Alves da Costa等发现与模拟转染的TSM1型神经元对照,野生型的α-突触核蛋白能够显著地减弱三种不同的细胞凋亡诱导剂星孢菌素、依托泊苷和神经酰胺C2对胞内半胱天冬酶(caspase)的激活[30],同样这可能与α-突触核蛋白的伴侣样蛋白作用有关;Ostrerova等也发现α-突触核蛋

关于突触核蛋白的特性介绍

  它的结构很大程度上依赖于其所处的细胞内环境,并且会表现出不同的结构如单体、寡聚体、原纤维和纤维等,病理状态下的突触核蛋白容易聚集形成不溶性的纤维蛋白沉淀,最终导致神经细胞死亡。人类基因学的研究证明了α-突触核蛋白基因突变在家族性的帕金森病中的主要致病地位,并且α-突触核蛋白的聚集有类似朊蛋白样的

关于突触核蛋白的基本介绍

  α-突触核蛋白是一种在中枢神经系统突触前及核周表达的可溶性蛋白质,它与帕金森病的发病机制和相关功能障碍密切相关,是路易小体的主要成分。  α-突触核蛋白的功能多样,可能参与到突触结构的维持、神经的可塑性、学习、记忆、发生、细胞粘附、磷酸化、细胞分化以及多巴胺的摄取调控等许多方面。

关于突触核蛋白的结构介绍

  总体结构  α-突触核蛋白是位于4q21-22SNCA基因[16]编码的一个小分子蛋白质,分子量为19kDa,,由140个氨基酸构成,可以分成三个部分:  氨基端:  (aa 1~60)包含了5个家族性帕金森病的突变位点以及高度保守的11个氨基酸中组成的KTKEGV 7模体重复序列,易形成两性α

突触核蛋白的发病机制介绍

  损害线粒体:Nakamura等发现在哺乳动物的多种细胞中过量表达α-突触核蛋白可以造成线粒体的裂解,而在胞内的其他细胞器的形态变化很小(如高尔基复合体),α-突触核蛋白不抑制线粒体的融合而表现出促进其分裂,并且不依靠线粒体分裂时需要的主要分裂蛋白Drp1[42];另外过量表达的α-突触核蛋白能够

简述突触核蛋白的伴侣蛋白样作用

  Kim等发现α-突触核蛋白能够表现出类似伴侣蛋白样作用防止谷胱甘肽硫转移酶(GST)和醛缩酶在受热的条件下发生沉淀,并且还能防止二硫苏糖醇(DTT)诱导α-乳白蛋白和小牛血清蛋白的沉淀[29],这可能与α-突触核蛋白能够与发沉降过程中的蛋白质的亲水性结构域结合并稳定其结构不被破坏。

离体神经突触的代谢性标记实验

试剂、试剂盒 固定剂温育液氯霉素放射自显影乳剂显影剂SDS样本缓冲液实验步骤 一、放射自显影神经元在条件培养基中培养 2d,如第十章所述。1.用一个锋利的微电极从胞体分离神经突起,并用牵引电极将胞体移出培养皿 (见第十章)。2.在培养液中加入终浓度 0.lmmol/L 氯霉素,阻断线粒体蛋白的合成。

离体神经突触的代谢性标记实验

            试剂、试剂盒 固定剂 温育液 氯霉素 放射自显影乳剂 显影剂 SDS样本缓冲液 实验步骤

离体神经突触的代谢性标记实验

mRNA 和 rRNA 存在于树突和轴突内(VanMinnen1994;Steward1997)。令人疑惑不解的是,位于胞体外区域的 mRNA 是否真的被翻译。下面的方法可以证明神经突起确实可以不依赖胞体而合成蛋白。现代神经科学研究技术作者:U.Windhorst & H. Johansson  翻

中国科研人员解密神经突触“黑匣子”

  记者10日从中国科学技术大学获悉,该校科研人员在利用冷冻电镜解析神经突触超微结构方面取得突破,解密了神经突触“黑匣子”。  国际学术期刊美国神经科学学会会刊《神经科学期刊》(《Journal of Neuroscience》)近日以封面形式报道了该项研究成果。  突触是大脑行为、意识、学习与记忆

关于神经细胞间的化学突触的简介

  存在于可兴奋细胞之间的细胞连接方式,它通过释放神经递质来传导神经冲动。  化学突触(synapse)是存在于可兴奋细胞间的一种连接方式,其作用是通过释放神经递质来传导兴奋。由突触前膜(presynaptic membrane)、突触后膜(postsynaptic membrane)和突触间隙(s

关于突触核蛋白降解异常的介绍

  泛素蛋白酶体系统(UPS)和自嗜溶酶体系统(ALP)是细胞内最重要的两个清除异常折叠或老化的蛋白质的机制[35,36];其中UPS选择性降解胞内短半衰期、胞膜蛋白、异常折叠以及受损的蛋白质,帕金森病的两个家族性基因突变Parkin[37]和UCHL1[38]均为影响UPS的功能导致异常α-突触核

突触核蛋白的生理功能介绍

  抑制多巴胺神经递质的释放:  Abeliovich等证实α-突触核蛋白基因敲除的小鼠黑质在成对电刺激条件下多巴胺释放量增加,而小鼠的生理活动不受影响,并且大脑的神经元结构保持完整,但α-突触核蛋白可能在病理条件下发挥保护作用[24]。  调节突触膜的囊泡释放:  Murphy等利用反义寡核苷酸技